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Acoustic Nonlinearity Parameter Due to Microplasticity
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Acoustic nonlinearity (which is quantified in terms of an absolute material parameter, the
acoustic nonlinearity parameter, β) can be caused by several sources, one of which is the
elastic-plastic deformation of the material. This paper develops a model to quantify the acous-
tic nonlinearity parameter due to elastic-plastic deformation. This new model is applicable to
general anisotropic elastic-plastic materials with existing Microplasticity strains due to either
monotonic or cyclic loading. As an example, the developed model is applied to calculate the
acoustic nonlinearity parameter of a single crystal copper specimen subjected to cyclic fa-
tigue loading. It is found that the acoustic nonlinearity parameter of this specimen increases
monotonically with increasing fatigue cycles.

KEY WORDS: Acoustic nonlinearity; nonlinear ultrasonic measurement; plasticity; single crystal
plasticity; dislocations.

1. INTRODUCTION

Ultrasonic techniques have been used exten-
sively for nondestructiveevaluation and inspection
of engineering components and structures. How-
ever, linear ultrasonic techniques are typically lim-
ited to the detection of flaws such as cracks and
delaminations. For material property characteriza-
tion, linear ultrasonic methods are primarily used to
measure elastic properties and attenuation charac-
teristics. Recent developments in the physics-based
diagnosis and prognosis of aerospace structural sys-
tems represent a great opportunity (and need) for
nondestructive methods that are capable of assessing
fatigue damage accumulation in critical components
in the early stages of fatigue life, before the formation
of any macroscopic cracks. One candidate method
that has the potential to nondestructively character-
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ize damage accumulation at such a micro-structural
level is nonlinear ultrasonics.

When elastic waves propagate through a
nonlinear medium, higher order harmonics are
generated.(1) The magnitude of one of these har-
monics, the second order harmonic, gives a direct
measure of the acoustic nonlinearity parameter
(β), an absolute non-dimensional parameter that
characterizes the nonlinearity of the medium. It
has been shown experimentally(2–5) that there is a
very good correlation between the fatigue damage
and the acoustic nonlinearity parameter in metallic
materials. The early work of Suzuki et al.(2) and
Hikata et al.(3) found that the measured acoustic
nonlinearity parameter in plastically deformed
single crystal aluminum was much higher than what
the lattice anharmonicity can possibly generate.
They attributed such an increase in the acoustic
nonlinearity parameter to dislocation glide. Using
the Granato-Lucke dislocation string model(6) for
pinned dislocations, they found a qualitative corre-
lation between dislocation density and the acoustic
nonlinearity parameter. Morris et al.(5) applied the
acoustic nonlinearity measurement technique to
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evaluate fatigue damage of Al-7075-T6 alloy. They
attributed the increase of acoustic nonlinearity to
the microcracks on the surface. Cantrell and Yost(7)

found that the contribution of dislocation dipoles
is even more significant in polycrystalline materials
since the monopole loop lengths in these materials
are usually much shorter than the ones used for the
calculations in earlier investigations. More recently,
Cantrell(8) proposed a model in which the evolution
of sub-structural organization of dislocations is taken
into account to predict total acoustic nonlinearity of
a polycrystalline nickel under cyclic load. Applica-
tion of Cantrell’s model to aluminum alloy 2024-T4
under fatigue loading yields excellent agreement
between theory and experiment.(9)

Although Cantrell’s dislocation-based model
provides a quantitative relationship between disloca-
tion density and the acoustic nonlinearity parameter,
this model requires detailed information about the
dislocation sub-structure, such as the dislocation loop
length and dipole height. To be predictive, this model
also requires the evolution of statistical parameters
such as the densities of dislocation monopoles and
dipoles, and the volume fractions of vein and persis-
tent slip bands (PSBs) during the fatigue. In practice,
however, most of these parameters are not easily
measured experimentally, nor can they be accurately
predicted with current modeling capabilities; this is
especially true when considering the evolution of
these parameters during fatigue.

In this paper, we propose an alternative ap-
proach to predict the acoustic nonlinearity parame-
ter. Instead of relating the acoustic nonlinearity pa-
rameter directly to the dislocation sub-structure (and
its evolution), we instead consider the continuum
manifestation of these dislocations, namely, plastic
deformation. It is well known that plastic deforma-
tion in metallic materials is a consequence of disloca-
tion dynamics. Therefore, it is conceivable that there
is a correlation between dislocation density and the
amount of plastic deformation in a given sample. The
advantage of formulating the acoustic nonlinearity
parameter in terms of the amount of plastic strain
in a material is that plastic strain is a macroscopic
and phenomenological parameter that quantitatively
characterizes the affect of the dislocation substruc-
ture. Therefore, the prediction of plastic strain and
its accumulation during fatigue does not require de-
tailed information on dislocation substructures. The
evolution of cumulative plastic strain for crystalline
metals has been extensively studied using crystal-
plasticity theories. Since the plastic strain and its evo-

lution can be simulated with sufficient accuracy and
efficiency, a model that relates the acoustic nonlin-
earity parameter to the cumulative plastic strain has
the potential to predict the relationship between the
acoustic nonlinearity parameter and the fatigue life
of a component. This direct linkage will enable the
nondestructive evaluation of the remaining fatigue
life of a component by measuring the component’s
acoustic nonlinearity parameter.

2. WAVE PROPAGATION IN A MEDIUM
WITH INITIAL MICROPLASTICITY

To develop the model, we introduce three ma-
terial states: the natural, the initial and the current
configuration.(10) The natural configuration describes
the virgin state of the material when it is free from
any deformation and stresses. The initial configura-
tion refers to the material state when certain mi-
croplasticity had occurred in the material, while the
current configuration denotes the material state with
ultrasonic wave-induced dynamic deformation su-
perimposed on the initial state of the material. In our
analysis, the deformation from the current to the ini-
tial states (due to ultrasonic wave motion) is assumed
small, but the deformation from the natural state to
the initial state can be finite. Furthermore, the defor-
mation from the natural state to the initial state is
assumed known.

We will denote the field quantities in the initial
and current states with superscripts i and c, respec-
tively. As shown in Fig. 1, the location of a material
particle in the natural, initial and current states are
denoted by the position vectors ξ, X, and x, all from
the origin of a common Cartesian reference coordi-
nate system. The displacement of material particles

Fig. 1. Three material configurations: natural (ξ), initial (X) and
current (x).
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from the natural to the initial, and from the natural
to the current states can be thus written, respectively,
as

ui = X − ξ, uc = x − ξ. (1)

It thus follows that the wave motion is described by

u = uc − ui = x − X. (2)

The deformation from the natural state to the initial
state can be fully characterized by the deformation
gradient tensor,

FIα = ∂XI

∂ξα

= ∂ui
I

∂ξα

+ δIα. (3)

Since the ultrasonic wave motion is considered as a
small disturbance from the initial state, we may use
the small strain

εαβ = 1
2

(
∂uα

∂ξβ

+ ∂uβ

∂ξα

)
(4)

to measure the deformation from the initial state to
the current state, i.e., we assume(

∂uλ

∂ξα

)2

≈ 0. (5)

To describe the deformation from the natural state
to the initial state, we use the Lagrangian strain mea-
sure,

Ei
αβ = 1

2

(
∂ui

α

∂ξβ

+ ∂ui
β

∂ξα

+ ∂ui
λ

∂ξα

∂ui
λ

∂ξβ

)
(6)

where, and in the rest of this paper, repeated in-
dex means summation from 1 to 3. Similarly, the La-
grangian strain tensor from the natural to the current
state is given by

Ec
αβ = 1

2

(
∂uc

α

∂ξβ

+ ∂uc
β

∂ξα

+ ∂uc
λ

∂ξα

∂uc
λ

∂ξβ

)
. (7)

The difference between these two strain tensors can
be written as

Eαβ = Ec
αβ − Ei

αβ

= 1
2

FIαFJβ

(
∂uI

∂XJ
+ ∂uJ

∂XI
+ ∂uK

∂XI

∂uK

∂XJ

)
. (8)

In deriving (8), we have made use of (1)–(2). Note
that this difference in the strain tensors is not the
same small strain defined in (4). For future use, we
write (8) in an alternative form,

Eαβ = AαβIJ

(
∂uI

∂XJ
+ 1

2
∂uK

∂XI

∂uK

∂XJ

)
, (9)

where

AαβIJ = 1
2

(FIαFJβ + FJαFIβ). (10)

Now, let σ̃i
αβ be the second Piola-Kirchhoff(11,12)

stress of the initial state written in the natural config-
uration, and σ̃c

αβ be the second Piola-Kirchhoff stress
of the current state written in the natural configura-
tion. Then, the stress increment from the initial state
to the current state due to ultrasonic wave motions
(written in the natural configuration) is given by

σ̃αβ = σ̃c
αβ − σ̃i

αβ. (11)

Written in the initial configuration, the same stress
increment can be expressed as(10,11),

σ̃IJ = 1
J

FIαFJβσ̃αβ = 1
J

AαβIJ σ̃αβ, (12)

where the symmetry property of σ̃αβ has been used,
and the Jacobian, J, is given by

J =
∣∣∣∣∂XI

∂ξα

∣∣∣∣ . (13)

It can be further shown that

σ̃IJ = 1
J

FIαFJβσ̃
c
αβ − 1

J
FIαFJβσ̃

i
αβ = σ̃c

IJ − σ̃i
IJ . (14)

We now consider the equations of motion. In
terms of the second Piola-Kirchhoff stress tensor, the
equations of motion of the current state, written in
the initial configuration, are given by(11)

∂

∂XJ

[
σ̃c

JK
∂xI

∂XK

]
= ρi ∂

2uc
I

∂t2
, (15)

where ρi is the mass density of the material of the
initial state. Making use of (2) and the fact that ui is
independent of time, we can re-write (15) as

∂

∂XJ

[
σ̃c

JI + σ̃c
JK

∂uI

∂XK

]
= ρ

J
∂2uI

∂t2
, (16)

where we have used the relationship(11)

J = ρ

ρi
. (17)

Furthermore, since the initial state is in static equilib-
rium, its Cauchy stress σi

IJ should satisfy

∂σ̃i
JI

∂XJ
= 0. (18)

Subtracting (18) from (16) and making use of (14)
yields,

∂

∂XJ

[
σ̃JI + σ̃JK

∂uI

∂XK
+ σi

JK
∂uI

∂XK

]
= ρ

J
∂2uI

∂t2
. (19)
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This is the governing equation for the wave motion uI

superimposed upon the initial state with an existing
inelastic strain.

To solve (19), a constitutive relationship be-
tween σ̃IJ and uI is needed. To this end, consider the
Lagrangian strains of the initial and current states
(6)–(7). They can be decomposed into elastic and
plastic parts,

Ei
αβ = Eie

αβ + Eip
αβ, Ec

αβ = Ece
αβ + Ecp

αβ. (20)

Note that, although the deformation from the nat-
ural state to the initial state may involve finite and
inelastic strain, Eip

αβ, the initial state is in static self-
equilibrium. The amplitude of the subsequent ultra-
sonic wave motion imposed upon the initial state is
very small and causes no additional inelastic defor-
mation. Therefore, we must have Eip

αβ = Ecp
αβ. It thus

follows from (8) that the strain difference between
the current and initial states is purely elastic, i.e.,

Eαβ = Ece
αβ − Eie

αβ. (21)

Furthermore, since no additional inelastic strain
(plasticity) is induced by the ultrasonic wave motion,
the inelastic strain existing in the initial state can be
viewed as ‘eigenstrain,’ so the material can be still
considered as elastic in the current state.(13) There-
fore, we may introduce a strain energy function W
(per unit mass). In an adiabatic and isentropic de-
formation, the strain energy becomes a function of
elastic strain. Thus the strain energy function of the
initial and current states can be written, respectively,
as

ρWi = 1
2

cαβγδEie
αβEie

γδ + 1
6

cαβγδεηEie
αβEie

γδE
ie
εη, (22)

ρWc = 1
2

cαβγδEce
αβEce

γδ + 1
6

cαβγδεηEce
αβEce

γδE
ce
εη, (23)

where ρ is the mass density, cαβγδ and cαβγδεη are, re-
spectively, the second and third order elastic con-
stants; all of the natural state of the material.

The second Piola-Kirchhoff stress tensors at the
initial and current states can be derived from the
strain energy functions(11),

σ̃i
αβ = ρ

∂Wi

∂Eie
αβ

= cαβγδEie
γδ + 1

2
cαβγδεηEie

γδE
ie
εη, (24)

σ̃c
αβ = ρ

∂Wc

∂Ece
αβ

= cαβγδEce
γδ + 1

2
cαβγδεηEce

γδE
ce
εη. (25)

With the help of (21), the above equations lead to

σ̃αβ = σ̃c
αβ − σ̃i

αβ = c0
αβγδEγδ + 1

2
cαβγδεηEγδEεη, (26)

where

c0
αβγδ = cαβγδ + cαβγδεηEie

εη. (27)

Note that c0
αβγδ has the usual symmetry of elastic con-

stants, i.e.,

c0
αβγδ = c0

βαγδ = c0
γδαβ . (28)

The difference between (27) and a similar equation
derived in Pao et al.(10) is that instead of the total
strain, only the elastic part of the strain of the ini-
tial state appears here. Upon substitution of (9) into
(26), we obtain

σ̃αβ = c0
αβγδAγδKL

∂uK

∂XL
+ 1

2
c0
αβγδAγδJL

∂uK

∂XL

∂uK

∂XJ

+ 1
2

cαβγδεηAεηKLAγδMJ
∂uK

∂XL

∂uM

∂XJ
. (29)

Making use of (29) in (12) yields the desired consti-
tutive relationship between the stress increment and
the ultrasonic wave motion,

J σ̃IJ = CIJKL
∂uK

∂XL
+ 1

2
DIJKLMN

∂uK

∂XL

∂uM

∂XN
. (30)

where

CIJKL = AαβIJ c0
αβγδAγδKL, (31)

DIJKLMN = AαβIJ (cαβγδεηAεηKLAγδMN

+ c0
αβγδAγδNLδMK). (32)

Because of the symmetries of c0
αβγδ and AαβIJ , it can

be shown that

CIJKL = CKLIJ = CJIKL, (33)

DIJKLMN = DJIKLMN = DIJLKMN

= DIJKLMN = DIJMNKL . (34)

Finally, substituting (30) into (19) yields

∂

∂XJ

[
1
J

(
CIJKL + Jσi

JLδIK +
(

CJLMNδIK

+1
2

DIJKLMN

)
∂uM

∂XN

)
∂uK

∂XL

]
= ρ

J
∂2uI

∂t2
(35)

3. ACOUSTIC NONLINEARITY PARAMETER
OF ANISOTROPIC MATERIALS

In anisotropic materials, the ultrasonic waves
do not necessarily propagate in pure longitudinal or
shear modes. The nonlinearity parameter for such
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quasi-modes in an anisotropic material can be de-
fined in a way similar to Breazeale and Philip(14) and
Cantrell(15). Without loss of generality, we choose
the 1-direction as the propagation direction. Further-
more, we assume that the inelastic deformation of the
initial state is uniform, i.e., FIα is constant through-
out the domain of interest. Equation (35) can then
be written as(

C(1)
IK + D(1)

IKM
∂uM

∂X1

)
∂2uK

∂X1∂X1
= ρ

∂2uI

∂t2
, (36)

where

C(1)
IK = CI1K1 + Jσ′

11δIK,

D(1)
IKM = 2C11M1δIK + DI1K1M1. (37)

Because of the diagonal symmetry of CIJKL, it is easy
to see that C(1)

IK is also symmetric.
For a plane wave propagating in the 1-direction,

we may write

uI = UIeik(X1−ct), (38)

where k is the wavenumber and c is the phase veloc-
ity. Inserting (38) into (36) and neglecting nonlinear
terms for now, we obtain the Christoffel equation,[

C(1)
IK − ρc2δIK

]
UK = 0. (39)

Since C(1)
IK is symmetric, there exist three real eigen-

values λ(n) and three real eigenvectors (i.e. polariza-
tion vectors), U(n). A transformation matrix P can
then be constructed by placing the three real eigen-
vectors side by side

P = [U(1)U(2)U(3)]. (40)

Then, we have from (39) that

PI(n)C
(1)
IJ PJ (n) = λ(n) for n = 1, 2, 3 (41)

Note that indices with parentheses are not summed.
Next, we let

uI = PIJ u(P)
J . (42)

Then, substitution of (42) into (36) in conjunction
with (41) yields,

ρi ∂
2u(P)

I

∂t2
= λ(I)

∂2u(P)
I

∂X2
1

+ �IJK
∂u(P)

J

∂X1

∂2u(P)
K

∂X2
1

, (43)

where

�IJK = PI ′ID(1)
I ′J ′K′PJJ ′PKK′ . (44)

It has been shown(16) that the off-diagonal terms
in �IJK (representing the coupling between modes)

are several orders of magnitude smaller than the
diagonal terms 1(unimodal terms). So, by neglecting
the off-diagonal terms in �IJK, equation (43) can be
written as,

∂2u(P)
I

∂t2
= c2

I

1 + �(I)(I)(I)

λ(I)

∂u(P)
(I)

∂X1

 ∂2u(P)
(I)

∂X2
1

. (45)

Therefore, the nonlinearity parameter for wave
mode, I, propagating in 1-direction is defined as

βI = −�(I)(I)(I)

λ(I)
. (46)

4. EXAMPLES AND DISCUSSIONS

As an example to illustrate the formation de-
veloped above, we consider the deformation of the
FCC single crystal copper under cyclic fatigue. The
fatigue behavior of copper single crystals has been in-
vestigated extensively by Mughrabi(17) and Mughrabi
et al.(18) An extensive review and discussion on the
cyclic deformation of FCC single crystals is found
in Reference 19. The displacement gradient tensor
in (3) is calculated from the plastic strain amplitude
available in the literature.(17,18)

A specimen oriented for single slip to occur in
the (111) plane along the [101] direction was fatigued
by a fully reversed cyclic loading in the [123] direc-
tion with a fixed plastic shear strain amplitude γpl.
The specimens were fatigued until saturation states
were attained. Figure 2 schematically shows the

Fig. 2. Schematic showing orientations of sample faces, slip place,
and loading direction.
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Fig. 3. Cyclic hardening and saturation behavior of a single crystal copper fatigued at a fixed
resolved plastic strain (γpl). (a) Resolved shear stress (τR) vs. resolved plastic strain, (b) Satu-
ration stress vs. resolved plastic strain.

relative directions of the loading, slip plane and spec-
imen faces. It is characteristic of FCC single crystals
that cyclic loading produces strain-localization zones
called persistent slip bands (PSBs). PSBs are the dis-
location substructure characterized by a ladder-like
regular arrangement of dislocation-rich walls and
dislocation-poor channels. Higher dislocation density
in the walls leads to high deformability of the PSBs,
which thus can carry most of the plastic strain in
the specimen. It has been observed that a saturated
state is attained after a rapid initial cyclic harden-
ing as shown in Fig. 3(a). In the saturated state, the
volume fraction of PSBs measured by their surface
markings remains unchanged for a fixed plastic re-
solved strain amplitude and temperature. Due to the
saturation of PSB volume fraction, the resolved shear
stress or the flow stress saturates as well, exhibit-

ing a constant hysteresis loop (Fig. 3(a)). Another
consequence of the saturation is the plateau region
in the cyclic stress-strain curve (CSSC) as shown in
Fig. 3(b). In Fig. 3(b), the lower and upper extremes
of the plateau of the CSSC are known to correspond
to the plastic strain amplitudes that can be accommo-
dated by the matrix (γpl,M) and by the PSBs (γpl,PSB)
in the saturation state. The plastic shear strains at
extremes of the plateau regime were measured as
γpl,M = 6 × 10−5 and γpl,PSB = 7.5 × 10−3. The vol-
ume fraction of PSBs between γpl,M and γpl,PSB were
observed(17) to increase linearly with the plastic strain
amplitude, that is,

f PSB = (γpl − γpl,M) / (γpl,PSB − γpl,M) ,

γpl,M ≤ γpl ≤ γpl,PSB . (47)
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The plastic shear amplitudes selected for our cal-
culations are γpl = 2.5 × 10−3 and 5 × 10−3. The total
cumulative plastic shear strains are 24.8 and 26.48,
which correspond to numbers of cycles of 2480 and
1324, respectively. The saturations occurred at cumu-
lative plastic shear strains about 4.28 and 3.46. These
are obtained from Fig. 1 of Mughrabi.(17) It is as-
sumed that the volume fraction of PSBs before sat-
uration increases linearly with the number of fatigue
cycles. The volume fractions of PSBs at saturation ac-
cording to (47) are 32.8 % and 66.4 %.

The residual shear stress in the specimen
is estimated using the information available in
Mughrabi(17) and Mughrabi et al.(18) and based on
a simple consideration of the microstructure. The
residual stress is regarded as the average shear stress
in the specimen produced by the plastic shear strain.
Since the PSBs in FCC crystals are formed as bulk
layers traversing throughout the whole cross section
of the specimen (rather than as isolated inclusions),
the overall stress can be estimated approximately by
the rule of mixtures as

τres = (1 − f PSB)τM + f PSBτPSB , (48)

where τM and τPSB are the shear stresses in the matrix
and PSBs at the saturation state. The shear stress in
the PSB was measured as τPSB = 27.5 MPa for copper
single crystals at room temperature(17,18) and that in
the matrix may be calculated by

τM = γpl,MG = γpl,M[C44(C11 − C12)/2]1/2 ≈ 2.5 kPa.

From these values, the saturated residual shear
stresses for γpl = 2.5 × 10−3 and 5 × 10−3 are about
9 MPa and 18.3 MPa, respectively. Figure 4 shows

Fig. 4. Residual stress change during fatigue for two different plas-
tic strain amplitudes.

Fig. 5. Orientation dependence of acoustic nonlineairy parameter
in cubic copper.

the residual stress vs. number of fatigue cycles. The
second order elastic constants of single crystal cop-
per used for the calculations are C11 = 168.4, C12 =
121.4, C44 = 75.4 in GPa and the third order elastic
constants C111 = −1271, C112 = −814, C123 = −50,
C144 = −3, C166 = −780, C456 = −95 in GPa. The
density is 8920 kg/m3.

Figure 5 shows the orientation dependence of
the acoustic nonlinearity parameter β of a longitudi-
nal wave in the (001) plane of the cubic copper before
fatigue, calculated numerically using Eq. (46) with
the plastic strain and residual set to be zero. An ex-
plicit functional form of Eq. (46) in terms of the sec-
ond and third order elastic constants exists only for
propagations in the axial, face-diagonal, and body-
diagonal directions.(15) It is assumed that the cubic
copper is a perfect crystal that has no atomic de-
fects. Therefore, the figure shows the intrinsic mate-
rial lattice anharmonicity.(14) It is seen that the acous-
tic nonlinearity due to the lattice anharmonicity is
in the range of 10 ∼ 18, which is the range of the
initial acoustic nonlinearity. It is noted that the
acoustic nonlinearity has an angular dependence sim-
ilar to the longitudinal wave speed: both are maximal
in the face-diagonal directions ([±1/

√
2,±1/

√
2, 0]).

Figures 6 and 7 show the longitudinal wave
acoustic nonlinearity parameters of the copper sin-
gle crystal as a function of the number of fatigue
cycles, for two different plastic strain amplitudes
(γpl = 2.5 × 10−3 and 5 × 10−3). The three different
curves correspond to three different propagation di-
rections of the longitudinal wave (propagation in
the X, Y, and Z directions in Fig. 2). The acous-
tic nonlinearity parameter is observed to increase
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Fig. 6. Acoustic nonlinearity parameter during fatigue for re-
solved plastic strain amplitude of 2.5 × 10−3.

monotonically by a significant amount. The increase
is slightly more pronounced for higher plastic strain
amplitude (γpl = 5.0 × 10−3). This may be explained
by considering the failure mode in the fatigued single
crystal. The crystal can be deformed in a single de-
formation mode (the primary slip, assuming that the
cross slips are small) without any constraint, and thus
the plastic strain as well as the dislocation density
increases continuously until its failure; so does the
acoustic nonlinearity. It is important to note that this
failure behavior would be much different in polycrys-
talline materials; such high plastic strain does not oc-
cur in polycrystalline materials, since the plastic de-
formation in each grain is constrained by surround-
ing grains. The accumulation of local plastic strain

Fig. 7. Acoustic nonlinearity parameter during fatigue for re-
solved plastic strain amplitude of 5.0 × 10−3.

at the grain boundaries may lead to crack initiation.
This crack initiation causes a stress concentration at
that site, while it relaxes stress in other parts of the
material, which results in retardation of global plas-
tic deformation. For this reason, the plasticity in-
duced acoustic nonlinearity in polycrystalline mate-
rials should tend to saturate with crack initiation.
Therefore, the present results in copper single crys-
tals serve as the upper bounds of the acoustic nonlin-
earity of polycrystalline coppers under similar fatigue
conditions.

In our calculations, the acoustic nonlinearity pa-
rameter of the entire specimen was predicted using
the applied resolved plastic shear strain amplitude,
which is the average plastic shear strain from the
specimen, as the input parameter. For this reason, the
predicted acoustic nonlinearity parameters may be
close to those in the PSBs, e.g., the local microplas-
ticity, since the entire material volume is assumed to
have the same plastic shear strain. For a more accu-
rate prediction of the overall nonlinearity parameter,
a micromechanical averaging scheme needs to be ap-
plied. The present model seems also to predict a sig-
nificant change in the second order elastic constants,
which results in a significant change in linear acoustic
properties such as the phase velocity, although signif-
icant changes of phase velocity in fatigue samples has
not been observed experimentally. The reason for
this is not clear and is currently under investigation.
It is noted that a similar change in the second order
elastic constants is also predicted by other models(9)

for calculating the acoustic nonlinearity of fatigued
materials.

5. SUMMARY

Since the nonlinear ultrasonic technique has
been found to be successful in experimentally eval-
uating fatigue damage in different materials, an an-
alytical model is needed that quantitatively relates
the measured acoustic nonlinearity parameter to the
damage state of the material. The model developed
here provides a direct and quantitative link between
the acoustic nonlinearity parameter and the cumu-
lative plastic strain in the fatigued sample. In con-
junction with fatigue models that relate the cumu-
lative plastic strain to fatigue life, the model devel-
oped here can be used to nondestructively evaluate
the remaining fatigue life of a sample by measuring
the acoustic nonlinear parameter.



Acoustic Nonlinearity Parameter Due to Microplasticity 37

It is important to note that acoustic nonlinearity
can be caused by a number of different sources. The
present model considers the contribution from resid-
ual microplasticity only. An advantage of the present
model is that it is formulated in terms of cumulative
plastic strain, rather than dislocation density. This en-
ables us to directly utilize existing models for crystal
plasticity and experimental observations of fatigue
damage.
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