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Abstract

This paper examines the propagation of time harmonic circumferential waves in a two-dimensional
(in®nitely long) hollow cylinder with an inner shaft. The boundary condition at the interface (between the
inner shaft and the outer cylinder) is assumed as free-sliding; that is, the interfacial shear stresses are as-
sumed to be zero, and the normal stress and radial displacements are continuous. The dispersion rela-
tionship is obtained from linear elasticity theory, and numerical results for the dispersion curves of the ®rst
several modes are presented. In addition, displacement pro®les along the radial directions are provided.
These results show that, at higher frequencies, the ®rst mode asymptotically tends to a Rayleigh wave on a
¯at surface, while the second mode also approaches a Rayleigh wave propagating along the free-sliding
interface. Ó 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Inspection for fatigue cracks in cylindrically shaped components, such as the rotor hub of a
helicopter, is an area of prime importance. Such components usually consist of (at least) an inner
and outer cylinder, and these fatigue cracks usually form at the interface between these two layers;
they then grow in the radial direction. Currently, detection of such radial cracks relies on visual
inspection. The chief reasons that traditional ultrasonic techniques (such as pulse-echo) cannot be
used to interrogate such a part, include problems associated with the curvature, the complicated
nature of the re¯ected waveforms and accessibility di�culties. Therefore, it is desirable to develop
more reliable, accurate and robust ultrasonic non-destructive methods to detect these cracks
before catastrophic failure occurs.
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A leading inspection candidate method is guided ultrasonic wave propagation; a guided wave
propagates in the direction of the layer, while behaving as a standing wave through the thickness
of the layer. These ultrasonic methodologies have the advantages of being remote, of using the
geometry of the layered cylinder to their advantage, and of being well suited to real-time analysis.
Guided waves have been commonly used to interrogate simple geometries such as beams and
plates, but very little work has been done to generalize their applicability to layered cylinders. One
such example is given by Nagy et al. [1], who suggested that radial fatigue cracks in weep holes in
airframes may be detected by using guided waves propagating along the circumferential direction
of the hole.

The motivation for this paper is the need to detect radial fatigue cracks in a shaft/bearing
assembly (as shown in Fig. 1), using guided circumferential waves. Therefore, wave propagation
in a layered cylinder must be understood. In order to accurately detect the crack, the dispersion
relationship for guided circumferential waves must be known; this enables the selective generation
of speci®c wave modes that carry the most energy to the interface (and to the crack).

Unfortunately, the solution to guided circumferential waves in a layered cylinder is not
available. Most of the existing studies on cylindrical geometries focus on wave propagation in the
axial direction of the cylinder. For example, wave propagation in a rod [2,3] and in a hollow
cylinder [4,5] is well known; each of these papers concerns propagation of a guided wave in the
axial direction of the cylinder. However, this paper addresses steady state, time harmonic guided
wave propagation in the circumferential direction of a double layered cylinder (shaft/bearing

Fig. 1. Specimen geometry, and transducer interrogation.
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assembly). The boundary condition at the interface (between the inner shaft and the outer cyl-
inder) is assumed as free-sliding; that is, the interfacial shear stresses are assumed to be zero, and
the normal stress and radial displacements are continuous. The dispersion relationship is obtained
from linear elasticity theory and numerical results for the dispersion curves of the ®rst several
modes are presented. In addition, displacement pro®les along the radial directions are provided.

Available work most relevant to the present study includes Qu et al. [6] and Liu and Qu [7],
where the dispersion equation for guided circumferential waves in an annulus (hollow cylinder) is
obtained, Liu and Qu [8], who examine transient waves propagating in the circumferential di-
rection of an annulus subjected to an impulse load on its outer surface, and Kawald et al. [9], who
look at circumferential surface waves on a thin layer over a solid cylinder.

This paper is arranged as follows: Section 2 introduces the boundary value problem for guided
circumferential waves in a double layered cylinder; the method of solution for obtaining
the dispersion curves is derived in Section 3; numerical results are presented in Section 4, in-
cluding a discussion on the speci®c nature of the wave ®elds; and ®nally, conclusions are given in
Section 5.

2. Problem statement

For steady-state, time harmonic waves in an isotropic, linearly elastic solid, the displacement
equation of motion is given by

c2
Lr�r � u� ÿ c2

Tr�r� u � o2u

ot2
; �1�

where u is the displacement vector, cL and cT are the longitudinal and shear wave speeds, re-
spectively,

c2
L �

k� 2l
q

; �2a�

c2
T �

l
q
: �2b�

In the above equations, q is the mass density, k and l are the Lam�e constants.
Now, consider the cross-section of a layered cylinder as shown in Fig. 1. Assume that the

cylinder is in®nitely long in the axial direction. Therefore, for waves propagating in the cir-
cumferential direction, the assumptions of plane strain deformation prevail (two-dimensional
linear elasticity theory). In this case, the pertinent non-zero displacement and stress components
in a polar coordinate system (r, h) are ur, uh, rr, rh and rrh. Spatially, these variables are all
functions of r and h only. It follows from [10] that the equation of motion (1) is identically
satis®ed if

ur � ou
or
� 1

r
ow
oh
; �3a�
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uh � 1

r
ou
or
ÿ ow

or
; �3b�

where the potentials (u and w) satisfy the wave equations

c2
Lr2u � o2u

ot2
; �4a�

c2
Tr2w � o2w

ot2
: �4b�

The corresponding stress components are related to the displacements through Hooke's law

rr � k
our

or
� ur

r
� 1

r
ouh

oh

� �
� 2l

our

or
; �5a�

rrh � l
ouh

or
ÿ uh

r
� 1

r
our

oh

� �
: �5b�

To model the shaft/bearing assembly, the interface, r� a, between the inner shaft and the outer
cylinder is assumed to be a free-sliding interface, i.e.

rrh�a� 0; h� � 0; �6a�

rrh�aÿ 0; h� � 0; �6b�

rr�a� 0; h� � rr�aÿ 0; h�; �7�

ur�a� 0; h� � ur�aÿ 0; h�: �8�
Furthermore, traction free boundary conditions are assumed on the outer surface, r� b, or

rr�b; h� � 0; �9a�

rrh�b; h� � 0: �9b�
Eqs. (3±9) form an eigenvalue problem. The solution of this eigenvalue problem gives the dis-
persion relationship between the wave number and the frequency (or phase velocity).

3. Method of solution

The expressions for the potentials of time harmonic waves propagating in the circumferential
direction are
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u��r; h; t� � U��r� exp�ik̂h� exp�ÿixt�; �10a�

w��r; h; t� � W��r� exp�ik̂h� exp�ÿixt�; �10b�
where x is the circular frequency and the non-dimensional variables are de®ned by

�r � r
b
; �11a�

k̂ � kb: �11b�
The wave number k in Eq. (11b) is related to the phase velocity and circular frequency through

k � x
c�b� ; �12�

and c(r) is the linear phase velocity for a material particle located at a distance r from the center of
the inner shaft. In another form

c��r� � �x
�k

r
b

cT; �13�

where

�x � xh
cT

; �14a�

�k � kh; �14b�

h � bÿ a: �14c�
It can be easily shown that

k̂ �
�k

1ÿ g
; �15a�

x̂ � x̂
1ÿ g

; �15b�

where

g � a
b
: �15c�

It is important to note that the proposed model Eqs. (10a) and (10b) represents a guided wave
that propagates in the direction of h; this is accomplished by the term exp�ik̂h�. This model was
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®rst introduced by Viktorov [11] as the natural extension of Lamb waves, from plates to curved
waveguides [12]. Viktorov's model is particularly well-suited for the current application, since the
interrogation of a cylindrical component (such as a rotor hub) requires exciting waves that
propagate in the circumferential direction. These waves would not be appropriate for interro-
gating long cylindrical components, such as piping; in this case, the wave of interest should
propagate in the longitudinal direction [5]. In addition, the angular wave number (k in Eq. (11b))
in the current model is real (and not necessarily an integer). This implies that single-valueness for
the potentials at 2p intervals is not necessarily satis®ed (as opposed to the usual vibration model,
where k must be an integer). However, this lack of single-valueness is not a problem, because the
circumferential wave can be interpreted as traveling down a helix in the complex plane. As a
result, a wave that travels a 2p interval, is not at the same starting location in the complex plane.

Substitution of (10) into (4) yields the solutions for the potentials

U��r� �
A1Jk̂

x̂�r
j

 !
� B1Yk̂

x̂�r
j

 !
; �r > g;

A2Jk̂

x̂�r
j

 !
; �r < g;

8>>>>><>>>>>:
�16�

W��r� �
C1Jk̂ x̂�r

� �
� C1Yk̂ x̂�r

� �
; �r > g;

C2Jk̂ x̂�r
� �

; �r < g;

8><>: �17�

where Jk̂�x� and Yk̂�x� are the Bessel functions of the ®rst and second kind, respectively. In the
above equations,

j � cL

cT

� 2�1ÿ m�
1ÿ 2m

; �18�

with m being the Poisson's ratio. Note that boundedness of the solution in the inner shaft implies
the Bessel function of the second kind has to be discarded in that domain. The shaft (inner cyl-
inder) is designated as material 2 and the bearing (outer cylinder) as material 1. The constants
A� [A1, B1, C1, D1, A2, C2]T are determined from the boundary conditions, (6±9).

Substituting Eqs. (16) and (17) into Eqs. (10a) and (10b), and then into (6±9) yields a system of
six homogeneous equations for the six unknown constants, A� [A1, B1, C1, D1, A2, C2]T

�dij�A � 0; �19�
where elements of the 6 ´ 6 coe�cient matrix of the system, [dij], are functions of the dimensionless
wave number, �k, and dimensionless frequency, �x, as well as the geometry parameter, g, and the
Lam�e constants of the two materials (k and l). These expressions are provided in Appendix A.

For non-trivial solutions, the determinant of matrix [dij] must vanish, yielding

D��k; �x� � Det�dij� � 0: �20�
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This is the dispersion (characteristic) equation for circumferential waves in a layered cylinder. For
each given �k, the dispersion Eq. (20) may have many roots for �x. As a result, the solution to
Eq. (20) represents a family of curves, called modes. Each of these curves corresponds to a wave
that propagates in the circumferential direction.

Once the dispersion Eq. (20) is solved, a non-zero eigenvector (up to an arbitrary multiplier),
A� [A1, B1, C1, D1, A2, C2]T is determined from Eq. (19). This eigenvector is set to norm one
without loss of generality. Substitution of the eigenvector (obtained from Eq. (19)) into Eqs. (16)
and (17), then into Eqs. (10a) and (10b), and then ®nally into Eqs. (3a) and (3b), yields the
displacement components of the circumferential wave

ur��r; h; t� � Ur��r� exp�ik̂h� exp�ÿixt�; �21a�

uh��r; h; t� � Uh��r� exp�ik̂h� exp�ÿixt�; �21b�

Ur��r�
Uh��r�

" #
�W��r�A; �22�

where W��r� is a 2 ´ 6 matrix whose elements are given in Appendix B.

4. Numerical results and discussion

This section provides numerical examples that illustrate some special features of guided cir-
cumferential waves in the layered cylinder (shown in Fig. 1). Since in the speci®c application of
interest (rotor hub), the two parts are both made of steel, the materials in the layered cylinder are
taken to be the same. The material properties and the geometry parameters used in the calcula-
tions are listed in Table 1.

For a given value of the non-dimensional wave number, �k, the dispersion Eq. (20) is solved
numerically to obtain the corresponding non-dimensional frequency, �x. To this end, a bisection
root-®nding scheme is used. Care must be taken, since the value of the determinant changes very
rapidly near its roots. For each given �k, Eq. (20) has an in®nite number of real roots for �x. Each
root corresponds to a propagating wave in the circumferential direction (a speci®c mode). After
solving for all of the roots for various values of �k, the �x versus �k relationship is plotted graphi-
cally. These �xÿ �k plots are called the dispersion curves.

Fig. 2 shows the dispersion curves for the ®rst seven propagating modes. Note that at higher
frequencies (higher wave number), all the curves become straight lines, illustrating that all modes
become non-dispersive at high frequencies. In particular, the ®rst mode becomes non-dispersive at

Table 1

Material and geometry data

m cT cL a b g

0.2817 3120 m/s 5660 m/s 5.08 cm 6.28 cm 0.8089
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a fairly low frequency. It will be shown later that this ®rst mode corresponds to the Rayleigh
surface wave on the outer surface of the double layered cylinder.

To reveal the details of the solution at lower frequencies, the low frequency range of the dis-
persion curves for the ®rst ten propagating modes are plotted in Fig. 3. It is seen from Fig. 3 that
a cross-over point seems to occur between the 8th mode and the 9th mode. However, careful

Fig. 2. The ®rst seven branches of the dispersion curves for the double layered cylinder.

Fig. 3. A close-up at the low frequency of the ®rst 10 branches of the dispersion curves for the double layered cylinder.
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examination of the numerical results indicates that this is not the case. These two modes get very
close, but do not touch each other. It is interesting to note that such cross-over does occur in the
case of a hollow cylinder [7]. Physical interpretations of such cross-over phenomenon are also
discussed in Ref. [7].

In order to investigate the e�ects of the ``lubricant layer'' and the ``shaft/bearing'' interactions,
comparisons are made between three cases: a homogeneous solid cylinder of radius b; a hollow
cylinder of inner radius a, outer radius b; and the layered cylinder shown in Fig. 1. The solutions
to the solid and hollow cylinders are taken from [13] and [7], respectively.

For all three cases, the ®rst mode corresponds to a surface wave on the outer surface of the
cylinder. As the frequency tends to in®nity (equivalently, as the radius of the cylinder tends to
in®nity), the outer surface can be viewed as a ¯at surface, and the ®rst mode thus becomes the
Rayleigh wave on a planar surface. For this reason, the fact that the cylinder is hollow or
layered is irrelevant (for the ®rst mode). Indeed, at higher frequencies, the dispersion curves for
the ®rst modes of each of these three cases approach a straight line, �x � 0:9245�k, which cor-
responds to the non-dispersive �xÿ �k relationship for a Rayleigh wave on a planar surface (see
Fig. 4(a)).

Fig. 4(b) demonstrates that the second modes show more dissimilarities among the three cases.
These dissimilarities tend to disappear as the frequency increases. For the layered cylinder, the
second mode behaves like an interface wave at higher frequencies. To illustrate this, the Stoneley
wave velocity is calculated for a planar sliding interface between two isotropic elastic media (see
Appendix C for the mathematical details). However, the calculations (in Appendix C) show this
Stoneley wave is really an additional Rayleigh wave propagating at the free-sliding interface. For
comparison purposes, the straight line pertinent to this case, �x � 1:1216�k, is also plotted in
Fig. 4(b).

The higher modes have some interesting similarities among the three cases. As shown in
Fig. 4(c)±(e), at low frequencies the homogeneous (solid) and the layered cylinders have very
similar (in fact nearly identical) dispersion curves, whereas the hollow cylinder is markedly
di�erent. This is because the ``lubricated'' interface has very little e�ect at low frequencies. In
contrast, at high frequencies, the homogeneous cylinder and the hollow cylinder are closer to
one another (if not identical), whereas the layered cylinder clearly departs from the other
two.

Next, consider the displacements. Once the dispersion equation (20) is solved, the eigenvector,
A, is determined (up to an arbitrary constant) from Eq. (19). For convenience, this eigenvector
is normalized such that kAk � 1. As previously mentioned, the numerical calculation of this
coe�cient vector is not a simple task. Care must be taken to calculate the root, the matrix and
the eigenvector with very high precision (15 e�ective digits are used in these calculations).
A singular value decomposition algorithm is also used to obtain a su�ciently accurate eigen-
vector, A.

Once the eigenvector A, has been calculated, the displacement components Ur��r� and Uh��r� are
evaluated using Eq. (22). Furthermore, it follows from Eqs. (21a) and (21b) that the amplitude of
the displacement vector can be computed as

Un��r� �
�������������������������������������
jUr��r�j2 � jUh��r�j2

q
: �23�
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Because the amplitude of the eigenvector A is arbitrary, the amplitude of the displacement vector
shown above Eq. (23) is normalized. For convenience, the displacements of each mode shown in
the ®gures are normalized with respect to their maximum value along the entire radius, i.e.,

Fig. 4. (a) Comparison of the ®rst mode among the solid, hollow, layered cylinders and the Rayleigh wave on the planar

surface. (b) Comparison of the second mode among the solid, hollow, layered cylinders and the Rayleigh wave on the

planar sliding-interface. (c) Comparison of the third mode among the solid, hollow, layered cylinders. (d) Comparison

of the fourth mode among the solid, hollow, layered cylinders. (e) Comparison of the ®fth mode among the solid,

hollow, layered cylinders.
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Uj��r� � Uj��r�
maxfjUj��r�j; �r 2 �0; 1�g ; j � r; h; n: �24�

Note that the radial variation of the displacements given in Eq. (22) depends on the fre-
quency through the eigenvalue Eq. (19). In the following numerical examples, the frequency is
chosen as �x � 63:23 which corresponds to a real frequency of 0.5 MHz. The corresponding
non-dimensional wave numbers are k̂� 66.48, 56.04, 43.96, and 40.41, respectively, for the ®rst
four modes.

Variations of the displacement amplitude along the radial direction are shown in Fig. 5(a)±(c).
The vertical dotted lines in the ®gures indicate the location of the shaft/bearing interface. First, it

Fig. 5. (a) Normalized radial displacement distribution along the radial direction.
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is seen that higher modes have more nodal points. Furthermore, the radial displacement
(Fig. 5(a)) is continuous, while the tangential displacement (Fig. 5(b)) is discontinuous due to the
``lubricated'' interfacial condition at the shaft/bearing interface. It can also be seen from Fig. 5(c)
that, for the ®rst mode, most of the energy is concentrated on the outer most surface (similar to a
Rayleigh surface wave). As the mode number becomes larger, the energy concentration shifts
progressively towards the center of cylinder.

The primary application of this work is to detect radial cracks growing from the interface
between the two cylinders. The dispersion curves and displacement pro®les developed in this study
demonstrate that the second mode is most suitable for this application because its energy content
is concentrated at the interface (at the frequency of interest, here 0.5 MHz). Therefore, the

Fig. 5. (b) Normalized tangential displacement distribution along the radial direction.

1380 C. Valle et al. / International Journal of Engineering Science 37 (1999) 1369±1387



generation apparatus (transducers, for example) should be set up to preferentially launch this
second (Rayleigh) mode, by applying the principle of matching trace velocity to determine the best
insoni®cation angle.

Before closing this section, it should be mentioned that the solution predicts an unbounded
displacement ®eld near the center, when �k � kb < 1. This is because in the displacement expres-
sion (22), there are terms like Jk̂�x̂�r=j�=�r which become unbounded as �r! 0 for �k < 1 [14]. Note
that kb� 1 corresponds to a wavelength equal to the outer circumference of the cylinder. It is
obvious that for a wave to propagate in the circumferential direction, its wavelength must be less
than the circumference. In other words, the assumption given in Eqs. (10a) and (10b) is valid only
for waves with high enough frequencies such that k̂ � kb > 1. When the wavelength is less than

Fig. 5. (c) Normalized normal displacement amplitude distribution along the radial direction.
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the circumference of the cylinder (k̂ � kb > 1), the type of circumferential waves de®ned in
Eqs. (10a) and (10b) do not exist [15].

5. Conclusion

This paper examines the propagation of time harmonic circumferential waves in a two di-
mensional (in®nitely long) hollow cylinder with an inner shaft. The boundary condition at the
interface (between the inner shaft and the outer cylinder) is assumed as free-sliding; that is, the
interfacial shear stresses are assumed to be zero, and the normal stress and radial displacements
are continuous. For comparison purposes, results of circumferential waves in a homogeneous
solid cylinder and a hollow cylinder are also presented. It is found that:

1. At low frequencies, circumferential waves in the layered cylinder behave very much like those in
a homogeneous solid cylinder, whereas at high frequencies the dispersion curves of the layered
cylinder are very di�erent from those of both the solid and hollow cylinders.

2. At higher frequencies, the ®rst mode tends asymptotically to a Rayleigh wave on a ¯at surface,
while the second mode also approaches an additional Rayleigh wave that propagates along the
sliding interface.

3. Circumferential waves do not exist when the wavelength is less than the circumference of the
cylinder.
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Appendix A

Please note that for completeness, those coe�cients are given for the general case of cylindrical
layers made of di�erent materials.

d11 � 2
l1

k1

k̂�k̂ ÿ 1� ÿ x̂1

j1

 !2

1� 2
l1

k1

� �0@ 1AJk̂

x̂1

j1

 !
� 2

x̂1

j1

l1

k1

Jk̂�1

x̂1

j1

 !
;

d12 � 2
l1

k1

k̂�k̂ ÿ 1� ÿ k̂1

j1

 !2

1� 2
l1

k1

� �0@ 1AYk̂

x̂1

K1

 !
� 2

x̂1

j1

l1

k1

Yk̂�1

x̂1

j1

 !
;

d13 � 2
l1

k1

ik̂��k̂ ÿ 1�Jk̂�x̂1� ÿ x̂1Jk̂�1�x̂1��;
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d14 � 2
l1

k1

ik̂��k̂ ÿ 1�Yk̂�x̂1� ÿ x̂1Y1k̂�1�x̂1��;

d15 � 0; d16 � 0;

d21 � 2ik̂ �k̂ ÿ 1�Jk̂

x̂1

j1

 !
ÿ x̂1

j1

Jk̂�1

x̂1

j1

 ! !
;

d22 � 2ik̂ �k̂ ÿ 1�Yk̂

x̂1

j1

 !
ÿ x̂1

j1

Yk̂�1

x̂1

j1

 ! !
;

d23 � �x̂2
1 ÿ 2k̂�k̂ ÿ 1��Jk̂�x̂1� ÿ 2x̂1Jk̂�1�x̂1�;

d24 � �x̂2
1 ÿ 2k̂�k̂ ÿ 1��Yk̂�x̂1� ÿ 2x̂1Yk̂�1�x̂1�;

d25 � 0; d26 � 0;

d31 � 2
l1

k1g2
k̂�k̂ ÿ 1� ÿ x̂1

j1

 !2

1� 2
l1

k1

� �0@ 1AJk̂

x̂1g
j1

 !
� 2

x̂1

j1g
l1

k1

Jk̂�1

x̂1g
j1

 !
;

d32 � 2
l1

k1g2
k̂�k̂ ÿ 1� ÿ k̂

j1

 !2

1� 2
l1

k1

� �0@ 1AYk̂

x̂1g
j1

 !
� 2

x̂1

j1g
l1

k1

Yk̂�1

x̂1g
j1

 !
;

d33 � 2
l1

k1g
ik̂

k̂ ÿ 1

g
Jk̂�x̂1g� ÿ x̂1Jk̂�1�x̂1g�

 !
;

d34 � 2
l1

k1g
ik̂

k̂ ÿ 1

g
Yk̂�x̂1g� ÿ x̂1Yk̂�1�x̂1g�

 !
;

d35 � ÿ 2
l2

k1g2
k̂�k̂ ÿ 1� ÿ x̂2

j2

 !2

k2

k1

� 2
l2

k1

� �0@ 1AJk̂

x̂2g
j2

 !
� 2

x̂2

j2g
l2

k1

Jk̂�1

x̂2g
j2

 !0@ 1A;

d36 � ÿ2
l2

k1g
ik̂

k̂ ÿ 1

g
Jk̂�x̂2g� � x̂2Jk̂�1�x̂2g�

 !
;
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d41 � 2i
k̂
g

k̂ ÿ 1

g
Jk̂

x̂1g
j1

 !
ÿ x̂1

j1

Jk̂�1

x̂1g
j1

 ! !
;

d42 � 2i
k̂
g

k̂ ÿ 1

g
Yk̂

x̂1g
j1

 !
ÿ x̂1

j1

Yk̂�1

x̂1g
j1

 ! !
;

d43 � x̂2
1 ÿ �k̂ ÿ 1� 2k̂

g2

 !
Jk̂�x̂1g� ÿ 2x̂1

g
Jk̂�1�x̂1g�;

d44 � x̂2
1 ÿ �k̂ ÿ 1� 2k̂

g2

 !
Yk̂�x̂1g� ÿ 2x̂1

g
Yk̂�1�x̂1g�;

d45 � 0; d46 � 0; d51 � 0; d52 � 0; d53 � 0; d54 � 0;

d55 � 2i
k̂
g

k̂ ÿ 1

g
Jk̂

x̂2g
j2

 !
ÿ x̂2

j2

Jk̂�1

x̂2g
j2

 ! !
;

d56 � x̂2
2 ÿ �k̂ ÿ 1� 2k̂

g2

 !
Jk̂�x̂2g� ÿ 2x̂2

g
Jk̂�1�x̂2g�;

d61 � k̂Jk̂

x̂1g
j1

 !
ÿ x̂1g

j1

Jk̂�1

x̂1g
j1

 !
;

d62 � k̂Yk̂

x̂1g
j1

 !
ÿ x̂1g

j1

Yk̂�1

x̂1g
j1

 !
;

d63 � ik̂Jk̂�x̂1g�;

d64 � ik̂Yk̂�x̂1g�;

d65 � x̂2g
j2

Jk̂�1

x̂2g
j2

 !
ÿ k̂Jk̂

x̂2g
j2

 !
;

d66 � ÿik̂Jk̂�x̂2g�;
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where

j1 � c�1�L

c�1�T

; j2 � c�2�L

c�2�T

; x̂2 � xb

c�2�T

; x̂1 � xb

c�1�T

;

k1 and l1 are the material constants of medium 1,
k2 and l2 are the material constants of medium 2.

Appendix B

Please note that for completeness, those coe�cients are given for the general case of cylindrical
layers made of di�erent materials.

For 06 �r6 g;

W11 � W12 � W13 � W14 � 0;

W15 � k̂
�r

Jk̂

x̂2

j2

�r

 !
ÿ x̂2

j2

Jk̂�1

x̂2

j2

�r

 !
;

W16 � i
k̂
�r

Jk̂�x̂2�r�;

W21 � W22 � W23 � W24 � 0;

W25 � i
k̂
�r

Jk̂

x̂2

j2

�r

 !
;

W26 � ÿ k̂
�r

Jk̂�x̂2�r� � x̂2Jk̂�1�x̂2�r�:

For g6 �r6 1,

W11 � k̂
�r

Jk̂

x̂1

j1

�r

 !
ÿ x̂1

j1

Jk̂�1

x̂1

j1

�r

 !
;

W12 � k̂
�r

Yk̂

x̂1

j1

�r

 !
ÿ x̂1

j1

Yk̂�1

x̂1

j1

�r

 !
;
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W13 � i
k̂
�r

Jk̂�x̂1�r�;

W14 � i
k̂
�r

Jk̂�x̂1�r�;

W15 � W16 � 0;

W21 � i
k̂
�r

Jk̂

x̂1

j1

�r

 !
;

W22 � i
k̂
�r

Yk̂

x̂1

j1

�r

 !
;

W23 � ÿ k̂
�r

Jk̂�x̂1�r� � x̂1Jk̂�1�x̂1�r�;

W24 � ÿ k̂
�r

Yk̂�x̂1�r� � x̂1Yk̂�1�x̂1�r�;

W25 � W26 � 0:

Appendix C

An interfacial wave that propagates along a planar interface between two elastic media is called
a Stoneley wave. The amplitude of a Stoneley wave decays exponentially away from the interface,
so most of the energy is concentrated along the interface. This Appendix considers a Stoneley
wave on a sliding interface between two elastic solids. The procedure was explained and derived in
Ref. [16]. This paper shows that the characteristic equation when the materials on the two sides of
the interface are the same is,

b1

k
k
b2

b1

k
k
b2

2 b1

k 2ÿ c2

c2
T

� �
k
b2

0 0

0 0 2 b1

k 2ÿ c2

c2
T

� �
k
b2

2ÿ c2

c2
T

2 ÿ2� c2

c2
T

ÿ2

�������������

�������������
� 0; �C:1�
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where

b1 � k 1ÿ c2

c2
L

� �1=2

�C:2a�

b2 � k 1ÿ c2

c2
T

� �1=2

; �C:2b�

It is easy to verify that this equation does not involve the wave number k as expected since the
Stoneley wave on a planar interface is non-dispersive. Additionally, it can be shown that Eq. (C.1)
reduces to

R�cL; cT; c� 1ÿ c2

c2
L

� �1=2

� 0; �C:3�

where R�cL; cT; c� is the Rayleigh surface wave equation [10]. Therefore, the free-sliding interface
does not support a Stoneley wave at all, but only an additional Rayleigh wave propagating at the
interface. The authors also found that a frictional interface does not support a Stoneley wave.
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