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This paper presents the results of an experimental and theoretical investigation that studies
the scattering of longitudinal elastic waves by a distribution of cracks. The experimental
portion measures the transmission coefficients at imperfect interfaces using a high fidelity
heterodyne interferometer. Specimens are manufactured with known distributions of cracks
that vary from 0% (perfect interface) to 24%. Incident longitudinal elastic waves are generated
with a broadband, contact piezoelectric transducer and the backscattered wave field is
measured with the interferometer. The theoretical analysis examines the interaction of elastic
waves with a distribution of cracks using a differential self-consistent scheme in conjunction
with Auld’s formula for backscattering. In this model the multiple scattering problem from
a distribution of cracks is reduced to finding the crack opening displacement of a single
crack. Transmission coefficients are presented as functions of incident wave-number, flaw
size and percentage of defects. The experimentally measured values are compared with the
theoretically predicted results and excellent agreement is obtained.
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Ultrasonic inspection is an established non-destructive
evaluation method for detecting defects in structural
components; this technique examines the interaction of
elastic waves with flaws to determine the size and location
of the flaws. Of particular interest is the ability to detect
defects in an interface between two materials. An incident
elastic wave that interacts with an interface between two
materials will create both reflected and transmitted waves
that propagate away from the interface. For a perfect
interface, the amount of the incident wave that is
transmitted and reflected is only dependent upon the
material properties of the two media; the resulting waves
are independent of the frequency content of the incident
waveform. The solution for the coefficients of the
transmitted and reflected waves, as a function of the
incident wave coefficient and the material properties, is
available in a number of sources, such as Reference 1.
However, if the interface is not perfect, the interaction
between the incident, reflected and transmitted waves is
more complicated. This paper presents the results of both
an experimental and theoretical analysis of the effect of
a distribution of cracks on the reflected and transmitted
waves. In this study, the distribution of cracks exists in
an interface between the same material. The experimental
results are used both to observe specific experimental
trends, such as the effect of incident wave frequency, and
to validate the theoretical model. The objective of this
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work is to provide a quantitative study of the interaction
of elastic waves with imperfect interfaces.

Because of the varied applications of this problem, the
backscatter of elastic waves from a distribution of defects
has been studied by numerous investigators using a
variety of techniques. Ismagilov et al.> were concerned
with the backscatter of longitudinal waves from thin
plates randomly oriented in a liquid. Kawahara and
Yamashita® studied the scattering of seismic waves from
a ‘fault zone’ by employing a theoretical study of elastic
waves due to a random distribution of cracks. Rao and
Zhu* used a statistical approach to estimate the scatterer
number density of a uniform material with randomly
distributed scattering bodies. All of these papers are
concerned with a random distribution of defects.
Sotiropoulos and Achenbach® modelled an imperfect
diffusion bond as a non-periodic distribution of cracks
and calculated the transmission and reflection coefficients
in terms of the number of cracks per unit length. The
model was verified by comparison with exact results.
Angel and Achenbach® calculated the reflection and
transmission of longitudinal and transverse elastic waves
due to an array of periodically distributed cracks of equal
length. Fourier series expansions were used to reduce the
mixed-boundary value problem to a singular integral
equation of the first kind for the dislocation density along
the crack faces.
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The experimental procedure in this investigation uses
a laser interferometer to measure the transmitted wave
field in four Plexiglas specimens that contain different
percentages of cracks. The high fidelity and non-contact
nature of the interferometric measurements are critical
for the success of this approach. Harmonic incident
longitudinal waves are generated with a contact piezo-
electric transducer driven by a function generator. The
specimens are manufactured by bonding two Plexiglas
blocks, one of which contains ‘crack-like’ defects. The
bonds, which are made with Plexiglas cement, have
identical material properties as the base Plexiglas. The
resulting specimens contain a controlled distribution of
defects that exist along an interface between two media
with identical properties.

The theoretical procedure is based on a differential
self-consistent scheme (DSCS)” together with Auld’s
backscattering formula®. First, the backscattered signal
from an array of cracks is calculated using Auld’s formula
by treating the array as a uniform interphase. Next, the
solution for the backscattering of a single crack in an
effective interphase is determined. The DSCS states that
the backscatterer from N + 1 cracks is equal to the sum
of the backscatter from N cracks, plus the backscatter
from a single crack in an effective interphase. This results
in a first-order linear, ordinary differential equation that
is solved in closed form. The theoretical results are
compared with the experimentally obtained values and
their accuracy and significance for non-destructive testing
is discussed.

Experimental procedure

Specimens with defects of 0, 10, 20 and 24% are
manufactured. The 0% specimen is a perfectly bonded
sample and will be used in a normalization procedure to
calculate the transmission coefficients. To ensure the
consistency and accuracy of the final results, the same
process is used to manufacture all of the samples. The
number of cracks needed to produce the desired defect
percentage is given as N = CL/a, where C is the density
of crack distribution, N is the number of cracks in length
2L and 2a is the crack length. The specimens are
manufactured using two pieces of 10.16 cm x 10.16 cm x
2.54 cm Plexiglas. Defects are manufactured by cutting
a groove approximately 1 mm deep into the face of one
of the Plexiglas samples with a band saw. The total length
of the defect (2a) is also 1 mm. A stencil is used to ensure
that the defects are evenly spaced along the face of the
Plexiglas. Each specimen is made so that the centre line
between the middle two defects is located at the centre
of the specimen’s face. This ensures a consistent method
for spacing the defects of the various specimens, but limits
the specimens to defect percentages which have an even
number of cracks.

A thin coat of Plexiglas cement is applied to the surface
of the Plexiglas and is used to bond both pieces together.
A wax coated filament is placed in the saw cut defects
in order to prevent them from being filled with cement
during bonding. The two pieces are pressed together with
a vice that applies a sufficient force to squeeze out any
air bubbles that may have become trapped on the
interface. In addition, this causes the Plexiglas cement
bond to become extremely thin. The dried Plexiglas
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cement has the same physical properties as the original
Plexiglas and consequently the boundary between the
two pieces of Plexiglas has the same physical properties
as any other point within the specimen. As a result, the
interface bond is neglected and the specimens are treated
as having one pair of material constants, 4 and u. Once
the cement has dried, the specimen is heated, causing the
wax to melt. The filament and molten wax are removed,
leaving a thin, ‘crack-like’ defect. An additional benefit
of using Plexiglas to manufacture the specimen is that
the quality of the bond and the shape of the artificial
cracks may be visually observed. The final specimens are
10.16 cm x 10.16 cm x 5.08 cm. These dimensions are
such that reflections from the sides of the sample arrive
(at the interferometric probe) after the entire original
pulse has been sampled; the specimen geometry does not
influence any of the measured waveforms.

The high fidelity laser interferometer that is used in
this procedure is described in detail in Reference 9. Briefly,
a single frequency laser light is split into two beams that
are separated in frequency by 40MHz using an
acousto-optic modulator. These two beams are sent along
two paths of the interferometer, one of which contains
the sample being monitored. The two beams are
recombined at a photodetector and produce a beat
frequency of 40 MHz. Frequency shifts in light reflected
from the sample surface result in proportional frequency
shifts in the 40 MHz beat signal. As a result, this 40 MHz
signal acts as a carrier that is demodulated in real time
with an FM discriminator to obtain the time-dependent
surface velocity. The interferometer makes high-fidelity,
absolute measurements of surface velocity over a
bandwidth of 10 MHz. Since this type of measurement
does not touch or acoustically load the specimen, the
event being observed is undisturbed by the measurement
process. Waveforms are recorded on a digital oscilloscope
and transferred to a personal computer via a GPIB
interface.

The experimental set-up consists of a specimen,
alignment fixture, broadband contact piezoelectric
transducer, function generator and the heterodyne
interferometer. The specimen is placed in the alignment
apparatus and the piezoelectric transducer is pressed
against the back of the specimen by a threaded rod. The
alignment fixture is used to consistently align the
transducer, specimen and interferometer; this consistency
is critical for the proposed normalization procedure. Any
variation is removed by centring the transducer on the
threaded rod, thus orientating the transducer and
interferometric probe in exactly the same locations for
each test. In addition, consistent couplant thickness and
transducer pressure is also important for the repeatability
of the experiments. The threaded rod that is used to press
the transducer against the surface of the specimen 1is
tightened the same amount for each test, thus producing
the same pressure and couplant thickness. This procedure,
combined with the accuracy of the interferometer,
produces a typical variation of under 4% when a
specimen is removed and the entire test is repeated.

Once proper transducer/interferometer alignment is
obtained, a function generator is used to excite the
transducer and create the incident longitudinal wave. The
transducer is excited with a two-cycle harmonic burst
over a range of frequencies that are prescribed by the
function generator. For each specimen, incident waves
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Figure 1 Typical source signal and response signal

are generated at 16 discrete harmonic frequencies that
vary from 0.25MHz to 1.5MHz The peak-to-peak
voltage of the driving signal from the function generator
is kept at a constant value of 25V throughout the
frequency range. The resulting surface velocities (that are
measured with the interferometer) are averaged, using a
digital oscilloscope, over 200 separate input signals for
each individual frequency. This signal averaging procedure
significantly increases the signal-to-noise ratio. A typical
averaged signal and its corresponding input signal are
shown in Figure I; this figure shows that the magnitude
of the ‘noise’ is insignificant when compared with the
actual signal. The ‘travel time’ indicated in Figure 1 is
the amount of time that it takes for the longitudinal
elastic wave to travel through the 5.08 cm thickness of
the specimen; in this case, 18.6 us. This time is used to
calculate the longitudinal wave speed, 2731 ms ™!, which
compares quite well with the published value of
2700 m s~ ! in Plexiglas.

In addition, spatial averaging is used to obtain an
accurate representation of the scattering effects; measure-
ments are made at a number of spatial locations and
these results are averaged. This reduces local effects that
can occur due to the point detection nature of the
interferometer. This averaging is especially important for
the higher percentage defect specimens. For example, the
results presented for the 24% specimen represent the
average of five spatial locations.

Experimental results

An effective measure of the magnitude of each exper-
imentally measured signal is the magnitude from the first
major crest to the first major trough. This peak-to-peak
value, referred to as A (see Figure 2), is a measure of the
transmission coefficient for each discrete driving frequency.
It is important to note the absolute nature of the
interferometric measurements; the vertical axis of Figure
2 shows the surface velocity in mms~!. Although the
transducer used to generate the incident elastic waves is
broadband, its actual output is not constant over the
range of frequencies considered in this study. The
0% defect specimen provides a representation of the
transducer’s flatness over the desired frequency range.
Figure 3 shows the peak-to-peak amplitudes (in terms of
surface velocities), A, versus the input frequency for all
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four specimens. These surface velocity data are used to
calculate the transmission coefficients, as functions of
frequency, for each specimen.

The transmission coefficients are calculated by dividing
the peak-to-peak amplitude, A, for a particular specimen
by the peak-to-peak amplitude of the 0% defect specimen
at each corresponding frequency. This calculation gives
the amount of the incident signal transmitted through
each block, as a function of frequency, normalized to the
0% defect specimen. This normalization to the 0%
specimen is necessary since the coefficient of the incident
wave is unknown. It is important to note that the
peak-to-peak amplitudes measured in the 0% specimen
are functions of the transducer type and pressure,
couplant thickness, driving frequency and voltage, as well
as any propagation losses (such as attenuation) that occur
in this perfectly bonded specimen. In contrast, the
peak-to-peak amplitudes in the 10, 20 and 24%
specimens contain all of these effects as well as any
scattering losses due to the presence of the defects. This
normalization of the 10, 20 and 24% amplitudes (As) to
the 0% amplitudes (As} removes the influence of any
propagation losses and transducer related features,
leaving only the effect of the scattering due to the array
of cracks. It is important to note that since the
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Figure 3 Peak-to-peak surface velocity, A, versus frequency
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interferometer is broadband and non-contact, it does not
influence the measured waveforms.

The transmission coefficients for each specimen are
plotted versus the dimensionless frequency, ka in Figures
4-6. Here, k; is the transverse wave-number (frequency
divided by transverse wave speed) and a is one half of
the crack length. These figures contain the discrete
transmission coefficients for each of the 16 experimentally
measured frequencies, as well as a continuous curve. The
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Figure 7 Comparison of experimental transmission coefficients

curves represent a fourth-order fit to the individual data
points. The curves model the broadband transmission
response, based on the 16 discrete, harmonic waveforms,
It should be noted that the fitted curves are only used
to help visualize the data; they make it easier to observe
experimental trends. The standard deviation of the
discrete values from the curve fit is calculated for each
plot. The standard deviations are 1.89, 2.07 and 1.64 for
the 10%, 20% and 24% defect specimens, respectively.
Figure 7 is a comparison of the transmission coefficients
for each of the three specimens.

In general, the 10 and 20% specimens show consistent
results, while the values of the 24% sample do not agree
as well. The experimental results show the expected trend
of decreasing transmission coefficients for increasing
percent defects. In other words, there is more scattering
when there are more defects present, regardless of
frequency. However, there is some discrepancy between
the 20% and 24% samples for kra values less than 1.5.
The 10% and 20% samples show a sharp decrease in
transmission for increasing kra, up to approximately 1.6.
This decrease is followed by a flat region (zero slope) that
leads to a gradual increase in transmission for increasing
kra. The 24% specimen shows a longer portion of
decreasing transmission for increasing kra (up to 2.8)
followed by a flat region and then a slight upward trend.
These results show the complicated nature of this
scattering problem; the transmission coefficients depend
on the ratio of the crack length (24), to incident
wavelength, as well as the number of defects in the array.

It should be noted that it is difficult to manufacture
specimens with high percentages of defects; the large
number of artificial saw cuts seems to cause additional
cracks and voids that form in the Plexiglas bond that
are not accounted for in this analysis. In addition, the
spatial averaging scheme needed to compensate for the
point receiver nature of the interferometer becomes more
critical for these higher percentage defect samples. All of
these factors contribute to the anomalies shown in the
24% results.

Theoretical model

The theoretical model is used to evaluate the interaction
of ultrasonic waves and a distribution of cracks along a
material interphase. The model employs a differential



self-consistent scheme (DSCS) together with Auld’s
backscattering strength formula. Auld’s formula is used to
calculate the backscattering, or reflection, due to an
interphase and a single crack in an effective interphase.
The DSCS is then used to find the reflection coefficient,
R, for any given percentage of defects (C). The DSCS
calculates the reflection coefficient by determining the
additional effect due to a single crack that is added to
an array of cracks. The transmission coefficient, 7T, is
then determined from the reflection coefficient. These
transmission coefficients are then compared with the
experimentally calculated values.

The theoretical model treats the problem as a
distribution of cracks on the interphase of two half-spaces.
A Cartesian coordinate system is used such that the
interphase is located at x, = 0. An incident longitudinal
wave is assumed to be propagating normal to the material
interphase, in the positive x, direction, originating from
x, = — 0. The upper half-space is referred to as region
1; the lower half-space is referred to as region 2 (Figure
8). The size of a single crack is assumed to be small when
compared with the incident wavelength. The material
constants A and yu, as well as the density, p, are assumed
to be identical in both half-spaces. The displacement
components far away from the distribution of cracks are
written as

u; = eik]_xz + Re—ikaz

u; = Telkl_xz

forx, <0

i (1)
orx, >0

where R and T are the reflection and transmission
coefficients discussed previously and k, is the longitudinal
wave-number. The time dependent term, ', is common
to all the displacement terms and will be omitted
throughout this manuscript for brevity.

Auld’s Formula for backscattering is developed
using a two-transducer, through-transmission system.
Transducer | produces an incident field of power P, and
transducer 2 is the receiver. The ratio of received electrical
signal strength, Ej, to the incident electrical signal
strength, E,, is denoted by I'. The change in the ratio,
oI, due to a single flaw is given by Auld’s formula

oI = [(Erpaw — (Etnoflaw]/[(Ennaw] ()
This formula may be simplified for the case of backscattering
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Figure8 Interphase cracks with incident, reflected and transmitted
waves
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where S is an arbitrary surface which surrounds the
scatterer and n; is the unit outward normal of S. In
Equation (3), the terms with superscript (1) relate to the
fields in the absence of the scatterer, while terms with the
superscript (2) relate to the fields in the presence of the
scatterer. For the case where the scatterer is a traction
free crack, Equation (3) is simplified to

iw

4p
where A% is the crack area and
Au? = uP(xy) — P(x7)
Equations (3) and (4) will be used to calculate the
backscattering from an interphase and a single crack on
an effective interphase.

If the array of cracks on the line x, = 0 is treated as
an interphase, the total displacement field for x, < 0 1s

given by Equation (1). By treating the entire lower
half-space as a scatterer, Auld’s formula yields

oI = j (e AuP)n, dS 4)
A+

iw + oo

~ap .

where the solution in the absence of the scatterer (the
incident field only) becomes

ol =

—_—

o3uy) — 05Uy, —odx, (%)

u(zl) — elkaz

o) = ik (A + 2u)eir

and the solution in the presence of the scatterer (incident
and reflected fields) may be expressed as

u(22) — eikl,xz + Re—vikl_xz
03 = ik (A + 2u)e > — ik (A + 2p)Re~ >

Equation (5) is integrated from — L to + L (the specimen
width) to obtain
4p
— oI = 4i(4 + 2u)k, RL (6)
iw
It is important to note that R is now a function of C,
the percentage of defects.

Next, Auld’s formula is evaluated for the case of a
single crack on an effective interphase as

s
=
Il
|
—

e3Au?), - o dx, (7)

where the solution in the absence of the scatterer (the
interphase without the crack) yields

o8 = ik (A + 2u)e — ik (1 + 2u)Re—Hkix

and the solution in the presence of the scatterer (both
the single crack and interphase) becomes

Au® = (1 — R)AuS
where Auf is the crack opening displacement (COD) due

to the incident wave, e***2. The evaluation of Equation
(7) yields

far = iak (A + 2u)(1 — R}*V 8)
1w

with

V= f l Aus(aé) dé 9
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which must be evaluated numerically. In this paper, a
boundary element method is used to calculate V
numerically at a number of discrete frequencies.

The Differential Self-Consistent Scheme (DSCS) is
based on the idea of constructing a backscattering model
by adding the effect of one crack at a time. The procedure
is based on the solution to the following three problems.

Problem 1 assumes that N + 1 cracks of length 2a are
located on an interphase of length 2L, giving a defect
percentage of C, = a(N + 1)/L. The reflection coefficient
from this effective interphase is given by R(C,). The
backscattering due to this array of cracks is found from
Equation (6) to be

5T(C,) = ﬁ [4ik, R(C,)LG: + 20)] (10)

Problem 2 treats an array of N cracks on a perfect
interphase as a scatterer. In this case, the crack density
on the interphase is C = aN/(L— a). The reflection
coefficient from this effective interphase is given by R(C).
The backscattering due to this array of cracks is obtained
from Equation (6) as

ST(C) = ;i% [4ik, R(C)L(A + 2] (11)

Problem 3 assumes that a crack of length 2a is
added to an interphase which has a crack density of
C = aN/(L— a) and a corresponding reflection coeffcient
given by R(C). As stated previously, the DSCS assumes
that the scattering from N + 1 cracks may be found by
adding the scattering of N cracks and the scattering of
a single crack. From this, it is seen that the scattering
from N + 1 cracks (Equation (10)) is equal to the addition
of the scattering from N cracks (Equation (11)) and the
scattering from a single crack (Equation (8)). That is

ST(C,) = 3T(C) + jT“’};iakL(/l +2u(l — ROV (12)

Substitution and simplification yields
dR V(1 — Ry?

ac~ 41 -0

Equation (13) is a first-order linear, ordinary differential
equation with the initial condition of

RO)=0

(13)

That is, the reflection coefficient will be equal to zero for
a specimen with no defects. Using this initial condition,
Equation (13)is solved for the reflection coefficient, R, as

—VIn(l —
_ V(-0 (14)
4 —Vin(l - C)
while the solution for the transmission coefficient is
4
T=1-R=— (15)
4—VIn(l - C)

Itisimportant to note that although the theoretical model
is developed for low crack densities, the solution is exact
for very high crack densities. For example, in Equation
(14) when the density C approaches 1 (no bond between
the upper and lower half-spaces), the reflection coefficient
R approaches 1 (total reflection).
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Theoretical results and discussion

The theoretical model is evaluated over a range of
frequencies corresponding to those examined in the
experimental portion, and for values of crack densities
of 10, 20 and 24%. A plot of the theoretical transmission
coefficients versus kra is shown in Figure 9, while Figures
1012 are comparisons between the theoretical and
experimental transmission coefficients for each sample.
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Figure 9 Comparison of theoretical transmission coefficients

SN .
,‘gox% _nn u“'“"
i1 J%
Ehn Sk
2 : — 10% - Thooretical

05 o b b

w1 . o |

03 —

02 ~p————

Figure 10 Theoretical and experimental transmission coefficients,
10% specimen

08 —

07—~

Transmission Coefficient

Ko

Figure 11 Theoretical and experimental transmission coefficients,
20% specimen



06 — - - '

Transmission Coefficient

4 . . == 24% - Theoretical
03 P : ® 24% - Experimontal

92 e e}

0 ! 2 3 4

Kra

Figure 12 Theoretical and experimental transmission coefficients,
24% specimen

For conciseness, the experimental results are shown in
terms of the discrete data points. The standard deviation
of these experimental values from the theoretical curve
is calculated for each plot. These standard deviations are
3.34, 3.66 and 8.62 for the 10, 20 and 24% defect
specimens, respectively.

In general, there is excellent agreement between the
theoretical and experimental results. For example, the
maximum difference between theory and experiment for
the 10% specimen is approximately 6%, while the similar
value for the 20% sample is 4%. In addition, both the
experimental and theoretical results show the same global
trends of decreasing transmission, followed by a local
minimum and finally increasing transmission. As expected,
the 24% results are not as consistent, but still show the
same global trends. The discrepancies of the 24%
specimen are due to the difficulties encountered in
manufacturing a ‘true’ 24% sample, as previously
discussed. It is interesting to note that for higher
frequencies (kra greater than 1.6), the experimental results
consistently predict more scattering than the theoretical
model. This is due to limitations in the theoretical model:
the theoretical approach is only valid for wavelengths
much larger than the half crack length a. This assumption
is violated in the higher frequency region of these curves.

Conclusions

This paper demonstrates the effectiveness of laser
interferometric techniques for the experimental investigation
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of scattering by a distribution of cracks and verifies the
accuracy of the differential self-consistent scheme. The
experimentally measured values are compared with the
theoretically predicted results and excellent agreement is
obtained. This work shows that the transmitted waveform
through an array of cracks is dependent upon the
percentage of cracks, the size of each crack and the
frequency of the incident wave.

These results are an important first step for the
evaluation of interfaces such as those that exist in
diffusion bonds and thick layered composites. The
explicit theoretical relationships between reflection or
transmission coefficients, crack density, incident wave
frequency and crack size that are validated in this
manuscript can be used to interpret ultrasonic waveforms.
For example, the percentage of defects in an interface
bond can be estimated by observing the relationship
between transmission coefficients and the incident wave
frequency.
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