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Abstract: This brief note reports on a study that applies the reas-
signed spectrogram (the reassigned energy density spectrum of the
short-time Fourier transform [STFT]) to develop the dispersion curves
for multimode Lamb waves propagating in an aluminum plate. The
proposed procedure first uses the spectrogram to operate on a single,
laser-generated and detected waveform to develop the dispersion
relationship for this plate. Next, a reassignment procedure is used
to refine the time-frequency resolution of the calculated dispersion
curves. This reassignment operation clarifies the definition of the
measured modes. This study demonstrates that the reassigned
spectrogram is capable of distinguishing multiple, closely spaced
Lamb modes in the ultrasonic frequency range.
c 2000 Acoustical Society of America

PACS number: 43.20.Mv, 43.35.Cg

1. Introduction

This research demonstrates the effectiveness of using the reassigned spectrogram to
characterize laser-generated and detected Lamb waves. By applying the reassigned
spectrogram to an ultrasonic waveform measured in a flat aluminum plate, it is possi-
ble to accurately determine the dispersion relationship for this plate.

Lamb waves, which are dispersive and contain multiple modes, have received
extensive attention since the study by Mindlin.1 Recent experimental work has shown
that it is possible to obtain a plate’s dispersion relationship by using the two-dimensional
Fourier transform (2D-FT) to operate on multiple, equally spaced waveforms.2;3 Un-
fortunately, the need for exact, spatially sampled data restricts the practicality of the
2D-FT for some inspection applications. In contrast, time-frequency representations
(TFRs) require only a single signal. Recently, Prosser et al.4 used the smoothed Wigner-
Ville distribution (a TFR) to determine the Lamb modes of numerically simulated
waveforms in an aluminum plate. They also consider real experimental data for a com-
posite plate and identify the s0 and the a0 Lamb modes for frequencies below 500 kHz.
Hayashi et al.5 determined the thickness and the elastic properties of thin metallic foils
(thickness of less than 40 �m) by calculating the group velocity of a single mode (the
a0 up to 3:5 MHz) using the wavelet transform (another TFR) of laser-generated and
detected Lamb waves.

The current study shows that the reassigned spectrogram is an extremely ac-
curate TFR capable of distinguishing multiple (seven in this example), closely spaced
Lamb modes in the ultrasonic frequency range (up to 10 MHz).
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Fig. 1: Time-domain signal measured in 0.93 mm aluminum plate, propagation distance of 11 cm.

2. Transient time-domain signal

The experimental procedure makes high-fidelity (resonance-free) measurements of Lamb
waves over a wide frequency range (200 kHz to 10 MHz). Broad-bandwidth Lamb
waves are generated with the beam from a Nd:YAG laser (4-6 ns pulse) (see Scruby
and Drain6 for details on laser ultrasonics). Laser detection of these waves is accom-
plished with a heterodyne interferometer7 that uses the Doppler shift to measure out-
of-plane surface velocity (particle velocity) at a point on the specimen’s surface. The
high-fidelity, broad-bandwidth and noncontact nature of laser ultrasonics are critical
elements for the success of this research. The specific plate examined is 0.93 mm thick
3003 aluminum, 203 mm long by 153 mm wide.

Figure 1 shows a (transient) time-domain signal with a propagation distance
of 11 cm measured in the 0.93 mm aluminum plate. The Nd:YAG laser fires at t = 0

and generates a Lamb wave at the source location (the spot where the Nd:YAG hits the
plate). Note that the electromagnetic discharge of the Nd:YAG’s firing causes a spuri-
ous noise spike at t = 0. The signal in Fig. 1 is discretized with a sampling frequency
of 100 MHz, low-passed filtered at 10 MHz, and represents an average of one hundred
Nd:YAG shots to increase the signal-to-noise ratio.

3. The reassigned spectrogram — background

It is possible to use a TFR to transform this signal (Fig. 1) into the time-frequency do-
main and then quantitatively characterize the plate’s features. This study establishes
the effectiveness of using a specific TFR, the reassigned spectrogram, to accomplish
this task. Instead of considering the Fourier transform of the entire signal at once, use
the STFT to chop a signal into a series of small overlapping pieces. Each of these pieces
is windowed and then individually Fourier transformed.8 The STFT of a function s(t)

is defined as:

S(!; t) =
1

2�

1Z
�1

e�i!�s(�)h(� � t)d�; (1)

where h(t) is a window function. The energy density spectrum of a STFT is defined as
E(!; t) = jS(!; t)j2 and called a spectrogram.

Unfortunately, TFRs such as the spectrogram suffer from the Heisenberg un-
certainty principle,8 making it impossible to simultaneously have perfect resolution in
both time and frequency. The standard deviations for time and frequency, �t and �! ,
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respectively, of the window function for a specific spectrogram are not independent of
each other; the Heisenberg uncertainty principle limits a spectrogram’s time and fre-
quency resolution by the following inequality:9 �2t �

2
! � 0:25. Note that the window

type (h(t)) determines the time-frequency spread of a spectrogram.9 For example, the
product of �2t �

2
! is 0:2635 for a spectrogram calculated with a Hanning window. A

Gaussian window function satisfies the equality �2t �
2
! = 0:25, but the current appli-

cation aims to alter the shape of the time signal as little as possible while avoiding
discontinuities across the boundaries of the windowed signal.9 The Hanning window
is chosen as a compromise.

The time-frequency resolution of a spectrogram depends only on the win-
dow size and type and is independent of frequency. A wide window gives better
frequency resolution, but worsens the time resolution, whereas a narrow window
improves time resolution but worsens frequency resolution. This is in contrast to
a wavelet transform;9 the wavelet transform tiles the time-frequency plane in an ir-
regular fashion, resulting in a frequency dependent, time-frequency resolution. The
wavelet transform of small frequency values provides good frequency resolution, but
the time resolution is bad. On the other hand, the wavelet transform of large frequency
values provides poor frequency resolution, but the time resolution is good.

It is possible to improve the time-frequency resolution of a spectrogram with
the reassignment method, a technique developed by Auger and Flandrin11 that pro-
vides a computationally efficient way to compute the modified moving window method
first proposed by Kodera et al.12 for the spectrogram and the scalogram (the energy
density spectrum of a wavelet transform). In the reassignment method, “energy” is
moved away from its original location, coordinates (t; !), to a new location, the re-
assigned coordinates (t̂; !̂), thus greatly reducing the “spread” of a spectrogram. The
reassignment method improves the time-frequency resolution of a spectrogram by con-
centrating its energy at a center of gravity. Note that the reassignment method is not
restricted to a specific TFR such as the spectrogram but can be applied to any time-
frequency shift invariant distribution of Cohen’s class.8

Auger and Flandrin11 show that the reassigned coordinates t̂ and !̂ for a spec-
trogram are:

t̂ = t�<

 
ST h(x; t; !) � Sh(x; t; !)

jSh(x; t; !)j2

!
(2)

and:

!̂ = ! �=

 
SDh(x; t; !) � Sh(x; t; !)

jSh(x; t; !)j2

!
(3)

whereSh(x; t; !) is the STFT (Eq. 1) of the signal x using a normalized window function
h(t); and ST h(x; t; !) and SDh(x; t; !) are the STFT’s with t � h(t) and dh(t)

dt
as their re-

spective window functions. The application of Eqs. 2 and 3 is computationally straight
forward and implemented with a MATLAB program.

4. The reassigned spectrogram — application to Lamb waves

Assessment of the the accuracy of the dispersion curves obtained with the spectrogram
and the reassigned spectrogram requires benchmark, analytical results, obtained by
solving the Rayleigh-Lamb frequency spectrum.1 Solution of the Rayleigh-Lamb spec-
trum provides dispersion curves in the frequency-wavenumber (f; k) domain, whereas
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Fig. 2: “Original” spectrogram of the time-domain signal in Fig. 1 obtained with a 384-point Hanning win-
dow plus analytical modes (solid lines). Note that Figs. 2 through 4 appear in color in the archived online
version of this brief note.

the spectrogram maps a signal into the time-frequency domain. To obtain the analyt-
ical dispersion curves in the time-frequency domain, the group velocities for each of
the different modes at all relevant frequencies are determined by numerically differen-
tiating f with respect to k.

Fig. 2 shows a contour plot of the square root of a spectrogram of the signal
in Fig. 1 for a 384-point long Hanning window together with the analytically obtained
dispersion curves (solid lines). The (experimental) s0 and a0 modes are clearly visible
through the entire frequency bandwidth (to 10 MHz), the a1 mode appears from 2 MHz
to 7 MHz, and traces of the s1, s2 and a2 modes are evident. Overall, there is very good
agreement between the analytical and experimental results, although there is a general
lack of time-frequency resolution (clarity) in the experimental results. For example,
it is difficult to positively identify the individual modes for frequencies above 5 MHz
and times greater than 40 �s. Note that Niethammer10 calculates spectrograms for
a variety of Hanning window lengths for the signal shown in Fig. 1 and determines
that the 384-point window provides the best compromise between time and frequency
resolution for this multimode, ultrasonic signal.

The reassignment method is used to improve the time-frequency resolution of
this “original” spectrogram, providing better clarity and definition of the individual
modes. Fig. 3 shows a contour plot of the square root of the reassigned spectrogram
obtained by applying the reassignment procedure (Eqs. 2 and 3) to the original spec-
trogram of Fig. 2. The reassigned spectrogram (Fig. 3) provides a crisper definition
of the individual modes (when compared to the original spectrogram), and the reas-
signed, experimental modes are localized to the analytical curves. However, some lack
of definition occurs at the intersection of modes. These “fuzzy” regions illustrate one
difficulty with the reassignment method — the strongest mode (the one with the high-
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Fig. 3: Reassigned spectrogram obtained by reassignment of the original spectrogram in Fig. 2.

est amplitude in the spectrogram) becomes the mode that attracts the center of gravity
during reassignment. As a result, the strongest mode remains a continuous line, but
this continuity is at the expense of weaker modes that become separated in the inter-
section region (e.g., the intersection of the a0 and s0 modes around 2 MHz in Fig. 3).
Finally, broken lines show up above 50 �s. These are most likely caused by reflections
from the boundaries of the plate and can sometimes (especially for short propagation
distances to the boundaries) lead to unwanted distortion of the reassigned spectro-
gram. Overall, there is excellent definition of seven modes (s0–s2 and a0–a3) through a
wide frequency range (up to 10 MHz), demonstrating that the reassigned spectrogram
is capable of distinguishing multiple, closely spaced Lamb modes in the ultrasonic fre-
quency range.

An additional portion of this research10 shows that the wavelet transform is in-
effective in resolving the multiple Lamb modes of this aluminum plate through such a
wide frequency range. Figure 4 shows the square root of an “original” and reassigned
scalogram of the same time-domain signal (Fig. 1) calculated with a Gabor wavelet.
Although the time resolution at high frequencies is very good, there is not enough fre-
quency resolution to separate the different modes at the high frequencies (e.g., above
2 MHz). Note that the scalogram is effective in resolving the a0 mode up to 10 MHz
— an important feature for some applications. In addition, the proposed reassignment
procedure does not significantly improve the time-resolution of the “original” scalo-
gram in this example.

5. Conclusion

This note clearly demonstrates the effectiveness of applying the reassigned spectro-
gram to determine the dispersion curves of multi-mode Lamb waves in the ultrasonic
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(a) “Original” scalogram
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(b) Reassigned scalogram

Fig. 4: Scalograms of the time-domain signal in Fig. 1, calculated using a Gabor wavelet.

frequency range, propagating in a flat plate. In general, the “original” spectrogram
provides a qualitative representation of the plate’s dispersion relationship, whereas
the reassignment procedure refines the time-frequency resolution of these dispersion
curves. Although the reassigned spectrogram has slight difficulties with mode inter-
sections, this technique is extremely effective in localizing multiple, closely spaced
modes in both time and frequency.

Acknowledgment

This work is supported by the Office of Naval Research M-URI Program “Integrated
Diagnostics” (Contract number: N00014-95-1-0539). The Deutscher Akademischer Aus-
tausch Dienst (DAAD) provided partial support to Marc Niethammer. The authors
thank Mr. Christoph Eisenhardt for his contributions.

References

1 R.D. Mindlin, “Waves and vibrations in isotropic elastic plates,” in Structural Mechanics, edited by J.N.
Goodier and N.J. Hoff (Pergamon Press, New York, 1960).
2 D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for measurement of propa-
gating multimode signals,” J. Acoust. Soc. Am., 89, 1159–1168 (1991).
3 C. Eisenhardt, L.J. Jacobs, and J. Qu, “Application of laser ultrasonics to develop dispersion curves for
elastic plates,” J. Appl. Mech., 66, 1043–1045 (1999).
4 W.H. Prosser, M.D. Seale, and B.T. Smith, “Time-frequency analysis of the dispersion of Lamb modes,”
J. Acoust. Soc. Am., 105, 2669–2676 (1999).
5 Y. Hayashi, S. Ogawa, H. Cho, and M. Takemoto, “Non-contact estimation of thickness and elastic
properties of metallic foils by wavelet transform of laser-generated Lamb waves,” NDT & E Int., 32,
21–27 (1999).
6 C. B. Scruby and L.E. Drain, Laser Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, 1990).
7 D.A. Bruttomesso, L.J. Jacobs, and R.D. Costley, “Development of an interferometer for acoustic emis-
sion testing,” J. Eng. Mech., 119, 2303–2316 (1993).
8 L. Cohen, Time-Frequency Analysis (Prentice-Hall, New Jersey, 1995).
9 S. Mallat, A Wavelet Tour of Signal Processing (Academic Press, New York, 1998).
10 M. Niethammer, Application of Time-Frequency Representations to Characterize Ultrasonic Signals (M.S.
thesis, Georgia Institute of Technology, Atlanta, 1999).
11 F. Auger and P. Flandrin, “Improving the readability of time-frequency and time-scale representations
by the reassignment method,” IEEE Trans. Signal Processing 43, 1068–1089 (1995).
12 K. Kodera, R. Gendrin and C. de Villedary, “Analysis of time-varying signals with small BT values,”
IEEE Trans. Acoust., Speech and Signal Processing 26, 64–76 (1978).

Niethammer et al.: Acoustics Research Letters Online [PII S0001-4966(00)50005-8] Published Online 23 March 2000

L24      J. Acoust. Soc. Am. 107(5), Pt.1, May 2000     0001-4966/00/107(5)/L19/6/$17.00 (c)2000 Acoustical Society of America      L24


	1. Introduction
	2. Transient time-domain signal
	3. The reassigned spectrogram — background
	4. The reassigned spectrogram — application to Lamb waves
	5. Conclusion

