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Relationship between Rayleigh wave polarization and state of stress
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Abstract

This research develops an analytical model (using Stroh’s formalism) to predict the affect of applied stress on the wave speed and the
polarization of Rayleigh surface waves. Simulation results are then used to demonstrate that the polarization of a Rayleigh wave (which
is reference-free) could be more sensitive than wave speed as an indicator of the state of stress.
� 2006 Elsevier B.V. All rights reserved.

PACS: 43.35.Cg; 43.35.Pt
1. Introduction and analytical model

The acoustoelastic effect – the dependency of ultrasonic
wave speed on state of stress – is a well established phe-
nomenon that has been extensively reported in the litera-
ture [1,2]. Application of this technique to measure
applied or residual stress requires measurement of the wave
speed by time-of-flight, so these measurements are not ref-
erence-free; the distance between the source and the recei-
ver of the ultrasonic wave has to be known exactly. In
contrast, this research provides the theoretical development
of a reference-free, alternative technique by demonstrating
that the polarization of a Rayleigh surface wave – defined
as the ratio between the maximum in-plane, and the max-
imum out-of-plane displacement components – is directly
related to the state of stress.

The acoustoelastic effect on Rayleigh waves in a homo-
geneous material was investigated by Hirao et al. [3] – they
present the dispersion relationship of a Rayleigh wave in a
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beam in bending. Duquennoy et al. also used Rayleigh
waves to investigate residual stresses [4,5].

Three different states of a body are considered in this
work, and each of these states must be carefully distin-
guished. A body that is in a totally stress- and strain-free
state is said to be in the natural state. In reality, this state
almost never exists in a real material because there are
residual stresses or stresses due to load or fabrication pro-
cesses, so the second state is called the initial state. An
ultrasonic wave superimposes a further displacement, and
causes another change in stress and strain – the resulting
state is called the final state. Fig. 1 shows the position of
a single particle for each of the different states. Following
the convention proposed in [6], the position of a particle
in the natural, initial and final states are referred to by
the vectors n, X and x, respectively, and all these vectors
are written in terms of the same Cartesian coordinate
system. The displacements that result from the change
of state are defined as: ui(n) = X � n; uf(n) = x � n; and
u(n) = x � X = uf � ui.

The proposed solution approach uses Stroh’s formalism
[7], a mathematically elegant technique that has been used
to solve two-dimensional, anisotropic elasticity problems
and steady state problems. The idea of Stroh’s formalism
is to represent the solution of a problem in matrix-nota-
tion, then start with an initial assumed solution of the
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Fig. 2. Boundary conditions for a Rayleigh wave in a predeformed half-
space.

Fig. 1. Coordinates for a material point in the natural (n), initial (X) and
final (x) states, following [6].

234 M. Junge et al. / Ultrasonics 44 (2006) 233–237
displacements, and then derive the stresses with this
assumed solution. Following [8–10], the equations of
motion in a solid with initial homogeneous stress are

ðdIK ti
JL þ bCIJKLÞ

o2uK

oX J X L
¼ q0ð1� ei

NN Þ
o2uI

ot2
; ð1Þ

where ti is the Cauchy stress tensor (state of stress at a
material point as a function of X) and ei is the initial (lin-
ear) strain tensor. Since the mass density changes due to
deformation (and mass must be conserved), Eq. (1) uses
the fact that for small deformations, the density can be
approximated by qi � q0ð1� ei

NN Þ. Finally note that for
an isotropic material, bC can be expressed as

bCIJKL ¼ kdIJdKL þ lðdIKdJL þ dILdJKÞ þ ½ð�kþ m1ÞdIJdKL

þ ð�lþ m2ÞðdIKdJL þ dILdJKÞ�ei
MM

þ 2ðkþ m2Þðei
IJdKL þ ei

KLdIJ Þ
þ 2ðlþ m3Þðei

IKdJL þ ei
ILdJK þ ei

JKdIL þ ei
JLdIKÞ; ð2Þ

where l and k are the well known Lamé constants and mi,
i = 1,2,3 are the third-order elastic constants (TOE-con-
stants) in the notation of [2]. It is important to note that
even though this development uses a non-linear stress–
strain relationship, displacements are assumed to be small,
so only terms that are linear in either the gradient of u or ui

are retained.
Assume a wave that propagates in the X1 direction and

has a displacement that decays exponentially with depth
(the X2 direction)

u ¼ aeikðX 1þpX 2�crtÞ; ð3Þ
where a is the displacement amplitude vector, k the wave-
number, p the decay parameter and cr the Rayleigh wave
speed. Substitution of Eq. (3) into Eq. (1) yields

fðdIK ti
22 þ bCi2k2Þp2 þ ðdIK ti

12 þ bCI1K2 þ dIK ti
21 þ bCI2K1Þp

þ ðdIK ti
11 þ bCI1K1Þ � dIKq0ð1� ei

NN Þc2
rgaK ¼ 0: ð4Þ
For the case of constant initial stress, the surface is taken to
be stress free in both the initial and the final states, so fol-
lowing Fig. 2, the boundary conditions are expressed as

NJ ti
IJ ¼ 0; at X 2 ¼ 0; ð5Þ

njt
f
ij ¼ 0; on the wavy surface: ð6Þ

These two boundary conditions can be combined, by first
transforming the Cauchy stress tensor (tf, that refers to
the final state) to an incremental Kirchhoff stress tensor,
T, as well as transforming the unit normal, n to N, and
applying N J ¼ ½ 0 �1 0 �. Eq. (6) can then be expressed
as

T I2 ¼ bCI2KL
ouK

oX L
¼ 0; at X 2 ¼ 0: ð7Þ

Since the stress tensor ti is assumed to be constant and ti
22

and ti
12 have to be zero at the surface due to Eq. (5), these

stress components are zero everywhere. Eq. (4) can then be
written in a more compact form

fp2bS þ pðbR þ bRT Þ þ bQ � q0ð1� ei
NN Þc2

r I|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Dðcr;pÞ

ga ¼ 0 ð8Þ

with bSIK ¼ bCI2K2, bRIK ¼ bCI1K2, bQIK ¼ dIK ti
11 þ bCI1K1, and I

is the identity matrix. For a non-trivial solution of this
homogeneous equation, the matrix D must have a rank
deficiency, thus

kDðcr; pÞk ¼ 0: ð9Þ

The solution of Eq. (9) yields three pairs of complex conju-
gate roots for p (for a given cr). It is physically reasonable
to select only those roots that have displacements that de-
crease, for an increasing X2. Thus, the roots with a negative
imaginary part are discarded. The roots with positive real
parts are denoted with pn, n = 1,2,3. It is worth noting that
for this problem, all values of pi are purely imaginary [7].
The displacement amplitude vector, ai, for each pi can be
determined by solving for the null-space of D. This allows



(a)

(b)

Fig. 3. Relative change in wave speed and polarization as a function of
applied uniaxial stress ti

11 along the propagation direction: (a) mild steel
and (b) polystyrene.

Table 1
Mass density, Lamé constants and the TOE-constants of the simulated
materials

Material q (kg/m3) k (GPa) l (GPa) m1 (GPa) m2 (GPa) m3 (GPa)

Mild steel 7837.0 107.4 81.9 �13.0 �200.0 �200.0
Polystyrene 1040.0 2.8 1.3 �18.9 �13.3 �10.0
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the displacement to be written as a linear combination of
the single solutions using the matrix-notation, or

u ¼ AGðX 2Þf eikðX 1�crtÞ; ð10Þ

where

A ¼ a1; a2; a3½ � ð11Þ

GðX 2Þ ¼
eikp1X 2 0 0

0 eikp2X 2 0

0 0 eikp3X 2

2
64

3
75 ð12Þ

and f is an vector whose elements are the factors for the
linear combination. The vector f will be determined by
applying the boundary conditions – plug Eq. (10) into
the boundary conditions, Eq. (7), yielding

ðbRT Aþ bSAP|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Bðcr; pÞ

Þf ¼ 0 ð13Þ

with

P ¼
p1 0 0

0 p2 0

0 0 p3

2
64

3
75: ð14Þ

The condition of a non-trivial solution to Eq. (13) gives

kBðcr; pÞk ¼ 0: ð15Þ
The vector f is then obtained by solving for the null-space
of B(cr,p).

The speed cr that satisfies Eqs. (9) and (15) is the wave
speed of the Rayleigh wave in a prestressed body. The dis-
placements are then determined with Eq. (10), and the
polarization vector is given by ûðX 2Þ ¼ AGðX 2Þf . The
polarization is calculated using the maximum displace-
ments in the X1 and X2 directions. At the surface
(X2 = 0), the polarization, P, is given by

P ¼ ðAf Þ1
ðAf Þ2

: ð16Þ

Unfortunately, there is not an easy analytical solution for
this problem and an iterative algorithm for the numerical
solution of Eq. (16) is described in [9].

2. Numerical results and discussion

Consider two materials, mild steel and polystyrene,
under an uniaxial stress, ti

11 that varies between
±25 MPa. Changes in Rayleigh wave speed and polariza-
tion will be very small, so consider relative changes in wave
speed and polarization (e.g., DP = (P � P0)/P0, where the
subscript 0 denotes the polarization in the natural state).
The simulation results for mild steel are shown in
Fig. 3(a), and for polystyrene in Fig. 3(b) with the mass
density, Lamé constants, and TOE-constants used given
in Table 1. Fig. 3(a) shows an approximately linear (inver-
sely) proportional relationship between relative change in
Rayleigh wave speed, Dcr, and applied uniaxial stress. This
relationship is Dcr ¼ kc

steel � ti
11, where kc

steel is a proportional-

ity factor of �5.7 · 10�7/MPa. Fig. 3(a) also presents the
change in relative polarization, and this change in polariza-
tion is an order of magnitude higher than the relative
change of wave speed. Again, there is also an approxi-
mately linear relationship given by DP ¼ kp

steel � ti
11 with

kp
steel ¼ 9:81� 10�6=MPa. Fig. 3(b), shows the two propor-

tionality factors for polystyrene, kc
PS and kp

PS. There is no
longer an ‘‘exact’’ linear relationship between relative
change in wave speed and ti

11 (and between relative polari-
zation and ti

11), but the approximated linear proportional-
ity factors kc

PS and kp
PS indicate that the polarization is

again an order of magnitude more sensitive to stress than
wave speed. Finally, Fig. 4 shows the changes of the
‘‘orbit’’ of a particular particle on the surface, for a change
in stress from +25 to �25 MPa.

Five other materials are analyzed and the results are
summarized in Table 2. First note that the proportionality



Fig. 4. Trajectory plot: motion of a particle on the surface in polystyrene. Solid line shows motion for uniaxial compression, dashed line represents
uniaxial tension.

Table 2
Comparison of the simulation results for the different materials

Material kc = Dcr/cr0

(1/MPa)
Pol-change kp

(1/MPa)
Ratio kp

to kp
steel

Ratio of kp

to kc

Mild steel �5.7217E-07 9.1822E-06 1.00 �16.05
Al (99.3%) �1.0023E-05 3.5809E-05 3.90 �3.57
Al alloy B53S �2.8842E-06 2.7893E-05 3.04 �9.67
Al alloy D54S �2.0447E-05 6.6730E-05 7.27 �3.26
Al alloy JH77S �2.3684E-05 6.0955E-05 6.64 �2.57
Polystyrene �6.4805E-05 7.9229E-04 86.29 �12.23
Brass �6.4805E-06 3.8480E-05 4.19 �5.94

Values are changes per MPa applied stress.
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factor of the relative polarization, kp, is larger than the pro-
portionality factor of the relative wave speed, kc, for all
materials. For mild steel, Al-B53S and polystyrene, kp is
an order of magnitude larger than kc. The fourth column
shows the ratio between the proportionality factor of the
polarization of steel, kp

steel, and the proportionality factors
of the various other materials. These results lead to the fol-
lowing conclusion – the stronger the material, the smaller
are the changes in both wave speed and polarization. In sum-
mary, determination of ti by the measurement of the polari-
zation should be more sensitive than the determination of ti

by the measurement of the wave speed for these materials.
Finally consider the sensitivity of these results to uncer-

tainties in the values of the TOE-constants – it is well estab-
lished that the TOE-constants will have a large degree of
scatter [11]. A simulation is implemented to calculate this
dependency, by examining the proportionality factors, kc
and kp, as a function of the TOE-constants. Note that
the Lamé constants of a material can be determined very
precisely (with an error less than 1%), so their values are
assumed to be constant throughout this simulation. Math-
ematically, the variation of the TOE-constants spans a
three-dimensional space, and has the shape of a cube [9].
The simulation results show that there is a strictly mono-
tonic relationship between each of the TOE-constants,
and the proportionality factors kc and kp. Fig. 5 shows
the results of assuming an uncertainty of 20% in the
TOE-constants of aluminum B53S, and the relative wave
speed and the relative polarization changes within the grey
shaded regions; it is clear that the polarization results are
less dependent on knowing the exact values of the TOE-
constants. Overall, the relative polarization is more sensi-

tive to applied stress than the relative wave speed (since
the proportionality factor, kp, is larger than kc), while being
less sensitive to uncertainties in the values of the TOE-
constants.

It is important to note that this study did not investigate
the influence of a number of critical factors including (but
not restricted to) anisotropic texture and surface rough-
ness. Further research is needed to determine the influence
of these factors on the relative polarization and thus show
its robustness as an indicator of the state of stress – is
polarization less sensitive than wave speed to these intrinsic
material variations that could be present in a real material?
This additional research is needed to demonstrate the effec-
tiveness of Rayleigh wave polarization as a practical tool to
measure applied or residual stresses.
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Fig. 5. Effect of uncertainties in the TOE-constants on the relative wave speed and relative polarization. If an uncertainty of 20% in the TOE-constants is
assumed the relative wave speed and the relative polarization changes within the grey shaded area.
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