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Abstract

This paper reports on the application of guided waves techniques to nondestructively determine the structural integrity of engineering
components. Specifically, this research uses a commercial finite element (FE) code to study the propagation characteristics of ultrasonic
waves in annular structures. In order to demonstrate the accuracy of the proposed FE technique, the propagation of guided waves in a flat
plate is examined first. Next, the propagation of guided waves in thick ring structures is investigated. Finally, these FE results are compared to
analytical and experimental results. The results of this study clearly illustrate the effectiveness of using the FE method to model guided wave
propagation problems and demonstrate the potential of the FE method for problems when an analytical solution is not possible because of
‘‘complicated’’ component geometry.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Conventional ultrasonic methods, such as pulse-echo,
have been used successfully to interrogate structural compo-
nents. However, the application of these traditional techni-
ques has been limited to testing relatively simple geometries
or interrogating the region in the immediate vicinity of the
transducer. A new, more promising ultrasonic methodology
uses guided waves to examine structural components. The
advantages of this technique include: its ability to test the
entire structure in a single measurement; and its capacity to
test inaccessible regions of complex components.

In general, a guided wave consists of many different
modes that propagate independently through the structure.
The wave propagation phenomena (waveform) that is
measured consists of the superposition of all of these
modes. These waves interact with defects, and with geome-
trical features such as corners and curved surfaces, causing
reflections and mode conversion. Clearly, the propagation
of guided waves in a complex structure is a complicated
process that is difficult to understand and interpret. The
current research develops the mechanics fundamentals that

models this propagation; this work is the required first step
needed to develop a nondestructive evaluation technique to
harness guided waves to interrogate a structural component.

One approach to modeling guided wave propagation
phenomena is to analytically solve the governing differen-
tial equations of motion and their associated boundary
conditions. This procedure can be (and already has been)
done for ‘‘easy’’ geometries and perfect specimens (no
defects). Analytical guided wave models are available for
plates in Refs [1,2], or more recently for an annulus in Ref.
[3]. However, these equations become intractable for more
complicated geometries or for a non-perfect specimen.
Another approach to this problem is a numerical solution;
the main advantage of this approach is that the difficulties
associated with ‘‘complicated’’ geometries and defects are
much easier to handle numerically. There are basically two
numerical methods which can be used for this problem: the
finite element (FE) method or the boundary element (BE)
method. The BE method has the advantage that just the
surface of the specimen needs to be discretized; the numer-
ical problem itself is therefore reduced by one dimension.
On the other hand, the primary advantage of the FE method
is that there are numerous commercial FE codes available,
thus eliminating any need to develop actual code. These
commercial FE codes have the additional advantages of
being very user friendly, and providing sophisticated
pre- and post-processing options. In addition, previous
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researchers [4] used the FE method to numerically
calculate dispersion curves in a plate, clearly demon-
strating that it is possible to use the FE method for
guided wave propagation problems.

In order to be pertinent for nondestructive testing
purposes, the FE models developed in this research must
be able to accurately represent ultrasonic waves with
frequencies in the MHz range. These high frequencies
require a high time resolution (small time increments
between calculated solution points), even for very short
real times (ms range). In addition, these MHz frequencies
have very short wavelengths, so the numerical model must
have small element lengths to accurately resolve these
spatial features; this high spatial resolution requires very
small elements, in the mm range or below. An additional
complication of this small element size is that a large
number of elements (and thus a large system of equations)
is needed to model a realistic component. As a result, the FE
solution requires the inversion of a large stiffness matrix,
leading to a requirement for significant computational
power.

The objective of this research is to compare known
(analytical) solutions of guided wave propagation problems
with numerically obtained solutions. This is done in order to
establish the validity of using the FE method to model annu-
lar wave guides. Two different geometries are studied: first,
the well known plate, using a full transient approach to
develop dispersion curves for the first few modes; and
second, an annular ring for which an analytical solution
was recently developed [3]. The results of both of these
geometries are used to develop and test guidelines for the
application of commercial FE codes for guided wave
problems of more complicated geometries. As a final
check, the FE results from the ring are validated with the
results from an experimental procedure that uses laser
ultrasonic techniques.

It is important to note that this work uses a commercial,
general-purpose FE code. The advantage of a commercial
code is that they are readily available in most mechanics
research groups, so no extra investment is necessary.
However, these general-purpose FE codes lack certain
features (such as energy absorbing elements) that are avail-
able in specialized wave propagation codes. As a result, a
secondary aim of this work is to find out the accuracy that
can be reached with a non-specialized, general-purpose FE
program. The FE program used in this work is Ansys 5.3,
the research version which is limited to 64 000 nodes.
However, these results are generic in nature and are relevant
for any large scale commercial FE code.

2. Application of the finite element method

This research is based on the assumptions of linear elas-
ticity. The general equations of motion in matrix form are

given as:

M �u 1 C _u 1 Ku � Fa; (1)

whereM is the structural mass matrix;C is the structural
damping matrix;K is the structural stiffness matrix;Fa, is
the vector of applied loads; andu, u̇, andü are the displace-
ment vector and its time derivatives, respectively. Damping
is not considered in this study. Eq. (1) is solved using the
Newmark time integration method[5].

Temporal and spatial resolution of the finite element
model is critical for the convergence of these numerical
results. The integration time step,Dt, is the step size for
which Eq. (1) is solved. Choosing an adequate integration
time step,Dt, is very important for the accuracy of the
solution. In general, the accuracy of the model can be
increased with increasingly smaller integration time steps.
With time steps that are too long, the high frequency compo-
nents are not resolved accurately enough. On the other hand,
too small time steps are a waste of calculation time. There-
fore, a compromise must be found. For the Newmark time
integration scheme, this compromise is 20 points per cycle
of the highest frequency results; this gives accurate
solutions in an efficient manner [6]. This rule is expressed
as:

Dt � 1
20fmax

(2)

wherefmax is the highest frequency of interest. By determin-
ing the highest frequency for waves propagating through the
structure, and using Eq. (2), a time step,Dt, is calculated that
is small enough to model the temporal behavior of the
propagation. If the input function gets close to a step func-
tion, the ratio given in Eq. (2) might not provide sufficient
temporal resolution. In some cases, this ratio has to be
increased up toDt � �1�=�180fmax� [6]. Also, the needed
time step can alternatively be related to the time the fastest
possible wave needs to propagate between successive nodes
in the mesh.

This research uses two-dimensional (2D) solid structural
elements that model plane strain in thez-direction. These
elements are defined by four nodes with 2 degrees-of-free-
dom at each node: translations in thex- andy-directions. In
order to mesh non-rectangular areas with elements of simi-
lar size, a few triangular shaped elements are needed; these
elements are taken as degenerated quadrilateral elements.
The mass distribution of all the elements is uniform. The
size of the elements are chosen in a manner so that the
propagating waves are spatially resolved. In Ref. [4], it is
recommended that more than 10 nodes per wavelength be
used, while in Ref. [6], the recommendation is much higher
(on the order of 20 nodes per wavelength). The
recommendation of Ref. [6] can be expressed as:

le � lmin

20
(3)

where le is the element length andlmin is the shortest
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wavelength of interest. Similar to the process for determin-
ing the integration time step,Dt, the range of interest with
respect to wavelength,l, must first be set. If highly accurate
numerical results are needed (for prediction of amplitude
attenuation or precise modeling of dispersion effects), Eq.
(3) might not be sufficient, and a higher level of
discretization might be required.

Eqs. (2) and (3) show that for high frequency wave propa-
gation problems, enormous computer resources are needed.
Computing such problems leads to high values offmax, and
also small values ofl, which means a very dense mesh and
very small integration time steps. As an example of the
order of such a problem, consider the solution for frequen-
cies up tofmax � 2 MHz and wavelength as low aslmin �
2 mm. The solution to this problem requires an integration
time stepDt� 0.025ms and an element lengthle� 0.1 mm.
As a result, the FE model of a 10 cm long and 1 cm thick
plate requires 100 000 elements. Note that the size of the
matrix equation is of the order of twice the number of
elements (each node has 2 degrees-of-freedom) and that
this large matrix equation must be solved for everyDt �
0.025ms, which means that for a real time of 50ms 2000
solution steps must be calculated. For nondestructive testing
applications, this example size is very realistic and is defi-
nitely not at the upper limit of the frequency content
measured in experimental models.

3. Numerical results and discussion

In order to understand the behavior and robustness of the
FE method applied to the solution of guided wave problems,
a relatively simple geometry is considered first: a 2 mm

thick and 100 mm long steel plate. This geometry has the
advantage of a known analytical solution (the Rayleigh–
Lamb equation) in the form:

F�a;b; j� � tanbb
tanab

1
4abj2

�j2 2 b2�2
( )^1

� 0

11 � symmetric mode

21 � antisymmetric mode;

( (4)

where a and b are parameters depending on the wave
frequency, the wavenumber and the wave velocity [1].
The FE model formulated to solve this configuration is
summarized in Table 1 as Model I. The material properties
and the resulting wave speeds are given in Table 2 as Mate-
rial I. The upper left corner of this plate, which is modeled
with square shaped elements (le� 0.1 mm), is loaded with a
displacement boundary condition in thex- andy-directions.
Fig. 1(a) shows the applied displacements on the different
nodes in the upper left corner of the plate, and Fig. 1(b)
shows the time function of these displacements. This load
has no practical meaning, but its frequency content is appro-
priate for exciting high frequency waves. The goal of this
model is to show dispersion effects up to a frequency,f, of
5 MHz. According to the recommendations in the previous
section, this transient problem is solved with a integration
time step,Dt � 1028 s. Fig. 2 shows thex displacement of a
typical node at the upper surface of the plate. In order to get
dispersion curves out of this data, a 2D Fast Fourier
Transformation (2D-FFT) is performed [4,7].
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Table 1
FE models

Model I: Plate
Thickness Length Element length Elements Nodes

2b � 2 mm l � 100 mm le� 0.1 mm 20 000 21 021

Model II: Ring
Inner radius Outer radius Element length Elements Nodes
r i � 51.05 mm ro � 63.15 mm le� 0.3 mm 26 950 27 571

Table 2
Material properties

Material I: Plate
Young’s modulus Poisson’s ratio Density

E � 200 103 N/mm2 n � 0.29 r0 � 7850 kg/m3

Compression wave Shear wave Rayleigh wave
c1 � 5778 m/s c2 � 3142 m/s cR � 2909 m/s

Material II: Ring structure
Young’s modulus Poisson’s ratio Density
E � 200× 103 N/mm2 n � 0.2818 r0 � 8030 kg/m3

Compression wave Shear wave Rayleigh wave
c1 � 5660 m/s c2 � 3120 m/s cR � 2886 m/s

Fig. 1. Transient excitation of several modes in a plate: displacement direction and time function of applied load.



For this demonstration, only thex displacements at nodes
on the upper surface of the plate are considered; only the in-
plane displacement results are used for the 2D-FFT. For the
sampled data, spatial and temporal aliasing effects have to
be avoided. Aliasing is an effect caused by sampling a
continuous signal with a digital sampling rate. If the contin-
uous signal contains frequencies above half the sampling
rate (Nyquist frequency), the frequency content of the
sampled data above the Nyquist frequency is spurious. As
a result, the (spatial and temporal) sampling rate for the 2D-
FFT must be chosen high enough to avoid aliasing for the
frequency and wavenumber range under consideration.
Since the upper frequency limit under consideration is
5 MHz, a sampling rate ofDT � 1027 s is used. From a
FE point of view, the element lengthle � 0.1 mm leads to
accurate results forl . lmin � 2 mm [see Eq. (3)]. This
results in a maximum value for 1/l � 500 m21. Therefore a
spatial sampling step ofDx � 0.5 mm is used. This means
that only solutions of every fifth surface node are needed for
the 2D-FFT. Thex displacements of 174 surface nodes for
400 time steps form a matrix with 174 columns and 400
rows. The 174 nodes mean that 87 mm of the plate is used
for the analysis of the numerical solution. 400 time steps
correspond to a total time of 40ms. In order to get a signal

without reflections from the right end of the plate, the time
signal is windowed with a cut-off time of 17ms. This cut-off
time corresponds to the time a longitudinal wave needs to
travel from one end of the plate to the other. The solution for
times larger then 17ms are ignored and replaced by zero in
order to increase the frequency resolution of the time FFT
(zero padding), and the 2D-FFT is performed on this matrix.
Another way to avoid unwanted reflections is to use new
techniques for modelling unbounded media [8] with energy
absorbing elements. Unfortunately, such elements are not
yet available in ANSYS 5.3 (and in most other general-
purpose FE codes), so they are not used in this study.

Fig. 3 shows the 1/l-f-spectrum, while the contour plot of
this spectrum is shown in Fig. 4(a). It can be seen clearly
from this figure that only certain 1/l-f-combinations have
meaningful amplitudes; these values are solutions to Eq. (4),
the Rayleigh–Lamb equation. Fig. 4(b) shows the magni-
tude of one column of the spectrum; each peak (marked with
an arrow) represents a 1/l-f-combination that satisfies Eq.
(4). Note that there are also some spurious peaks [e.g. left of
the second identified peak in Fig. 4(b)] caused by data-
sampling and numerical errors. The discrete ‘‘x’’ in Fig.
4(a) indicates the location of a peak in a column of the
spectrum. The exact solutions of Eq. (4) are plotted as
solid lines; there is excellent agreement between the numer-
ical (FE) and analytical (exact) results. For this FE model,
the recommended ratiol/le � 20 is reached for 1/l �
500 m21. The fact that there is good agreement even for
higher values of 1/l leads to the conclusion that this wave-
length limit is not that critical. However, Fig. 4a) shows that
the ratio between the integration time step,Dt, and the
frequency,fmax, is much more critical; the numerical solu-
tions get worse, the closer the ratio 1/(DT fmax) gets to the
recommended value of 20. In summary, this model of a
plate shows that a commercial FE can be used to model
the dispersive nature of guided waves.

Next, a more complicated geometry, a steel ring, is
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Fig. 2. In-plane displacementux of a node at upper surface; signal is
windowed with a cut-off time of 17ms.

Fig. 3. Spectrum of steel plate obtained by 2D-FFT.



modeled. This problem demonstrates the potential of the FE
method to model guided waves in a ‘‘complicated’’ struc-
ture of realistic size (the travel distance is more than one
order of magnitude larger than the wavelength). The ring
structure under consideration is shown in Fig. 5, and its
material properties, steel, are summarized in Table 2 as
Material II. The ring is loaded on its outer surface with a
point force,f(t), that acts perpendicular to the surface. Due

to the fact that the problem is symmetric, only half of the
ring needs to be modeled. The boundary conditions are that
the nodes in the symmetry plane cannot move in they-direc-
tion. This boundary condition is noted in the right half of
Fig. 5 by rollers. The time function of the input load,f(t),
and its frequency content are given in Fig. 6. This frequency
content supposes that frequencies above 1 MHz are not of
interest.
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Fig. 4. (a) Frequency spectrum of plate: exact solutions of Rayleigh–Lamb equation and numerical results (contour plot and peaks); (b) magnitude of matrix
column obtained by 2D-FFT.

Fig. 5. Symmetric problem: ring loaded with point forcef(t).



An optimum FE model of the ring is developed with
respect to integration time step,Dt and mesh density; the
details of this convergence study are given in Ref. [9]. A
description of this ‘‘convergent’’ model is shown in Table 1
as Model II, while the corresponding calculation times for
real times of 55ms and the frequency limit calculated with
Eq. (2) are given in Table 3. These calculations are done
with different Windows NT machines with a Pentium 200
processor and 128 MB RAM.

Using this FE model, the distance between the source and
the receiver (measured as angleb) is varied; Fig. 7 shows
the wave propagating along the outer surface of the ring.
The different plots are the radial surface velocities,u̇r, for

F. Moser et al. / NDT&E International 32 (1999) 225–234230

Fig. 6. Time function and frequency content of the concentrated loadf(t).

Fig. 7. Surface velocityu̇r in [1026 m/s] along outer surface for various anglesb plotted over timet in [ms].

Table 3
Integration time steps, needed calculation times and frequency limits for
model II and real time of 55ms

Integration time stepDt Calculation timetcal Frequency limitfmax

0.2ms 8.5 h 0.25 MHz
0.1ms 17 h 0.5 MHz
0.05ms 36 h 1.0 MHz
0.025ms 78 h 2.0 MHz



different angles,b. The dominant feature in all these plots is
the surface wave, the first mode that propagates in the ring.
The fact that the shape of this wave changes for increasing
angles,b, qualitatively shows that waves in the annular ring
are dispersive. The element length,le� 0.3 mm, of Model II
is compared to the wavelength,l, of the main feature shown
in Fig. 7, the surface wave. This surface wave is comparable
to the Rayleigh wave on a planar surface although it travels
slightly faster than a Rayleigh wave on a flat surface [2, 3].
Using the general correlation between the frequency, the
wave speed and the wavelength,c � lf, the Rayleigh
wave speedcR � 2886 m/s andf � fmax � 1 MHz as the
largest important frequency (from Fig. 6), the smallest
wavelength is estimated asl < 2.9 mm. The ratio between
this wavelength and the element length isl/le < 10. Consid-
ering that the actual wave speed of the first mode is a little
bigger thancR, and that the important frequencies are smal-
ler than assumed, this ratio might be increased to 15. This
value is still below the recommendation (l/le)rec� 20 given
in Eq. (3).

Next, examine the arrival of the different features shown
in Fig. 8. This figure shows the radial velocity,u̇r, for b �
458. The first time the velocity,u̇r, differs significantly from
zero,t1� 8.4ms, corresponds to the theoretical arrival time
of a longitudinal wave (C1) propagating directly from
the source to the receiver. The theoretical arrival time of the
shear wave that travels directly from the source to the
receiver ist2 � 15.4ms (C2). The theoretical arrival time

of the surface wave can be estimated by the Rayleigh
surface wave (CR) on a planar surface and the arc length
from the source to the receiver,tR,planar � 17.2ms. The
surface wave on a curved surface travels either faster or
slower than the Rayleigh surface wave on a planar surface,
depending on whether the surface is convex or concave. In
Ref. [2], the velocity,c, of such a wave on a convex surface
is described with the following equation:

c� cR�1 1 d�; (5)

whered is a small correction factor depending on the mate-
rial’s elastic properties and the wavenumber,j, whered! 0
as j ! ∞ and is given in Ref. [2]. This same excellent
agreement between theoretical and numerically predicted
arrival times is also seen for other receiver positions,b,
and demonstrates the accuracy of the FE solution.

Finally, the geometry of the ring is modified slightly to
demonstrate the robustness of the FE method. In an analy-
tical solution, a slight change in geometry can cause major
solution difficulties, but the FE method can model these
more realistic shapes without any additional complications.
For example, the geometry of the ring is modified as shown
in Fig. 9. Two different sized ‘‘perturbations’’ (semi-circu-
lar areas) are added to the ideal ring. The radii of these semi-
circular areas areR � 5 and 10 mm. For comparison
purposes, the ideal ring is presented as well. Fig. 10
shows the radial velocityu̇r, for the various cases with an
angleb � 112.58. The main feature of the ideal ring, the
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Fig. 8. Identification of the arrival of P, SV and surface waves.

Fig. 9. Modified ring geometry.



surface wave, disappears in the two other cases. This leads
to the conclusion that the first mode is tied to the convex
surface and if this geometry is disturbed, this mode can no
longer propagate.

4. Comparison with other approaches

The FE results (Model II and Material II) are first
compared with an analytical solution using the mode super-
position method [3]. Briefly, the first step for the mode
superposition method is to explicitly solve the eigenvalue
problem for the set of ring dimensions. Next, the transient
problem for the load shown in Fig. 6 is solved by mode
expansion [3]. The radial displacements,ur, at a 908 angle
between the source and the receiver are plotted in Fig. 11
and compared with the FE results. The excellent agreement
between these two solutions illustrates that the FE method
does an outstanding job in modeling wave propagation
problems in wave guides. It also confirms that the FE solu-
tion converges toward the correct value using parameters
chosen according to Eqs. (2) and (3).

As another benchmark, these FE results are compared
with experimentally obtained waveforms. Optical genera-
tion and detection of ultrasonic waves [10] is used in these
experiments, which comes very close to the ideal case of a
point source and receiver assumed with the FE method. The

main difference between the FE model and the experimental
procedure is that the frequency content of the experimental
source is broad band, while the numerical source has a
limited frequency content. However, both sources mainly
excite the first mode, the surface wave propagating along
the outer surface. Since this mode propagates in an almost
non-dispersive fashion, its arrival time is nearly frequency
independent and can be used to compare the experimental
and FE results. The arrival time of the main peak of the first
mode is measured (numerically and experimentally) for
different travel distances between source and receiver. Fig.
12 shows experimental results for different travel distances
(indicated by angleb); these plots correspond to the FE
results in Fig. 7. The numerical peaks arrive 1.7%–4.2%
earlier than the experimentally measured peaks. This differ-
ence can be explained by the slightly decreasing phase velo-
city of the first mode with increasing frequency; the early
arrival makes sense, and provides another demonstration of
the accuracy of the FE method.

5. Conclusion

This research clearly illustrates the effectiveness of using
the FE method to model 2D guided wave propagation
problems, specifically demonstrating the potential of the
FE method for problems when an analytical solution is
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Fig. 10. Comparison of modified ring geometries: radial velocityu̇r for b � 112.58.



not possible because of a ‘‘complicated’’ component
geometry. This research establishes the foundation
mechanics to numerically solve guided wave propagation
in complex structures and uses the powerful post-processing

capabilities of a commercial FE code to study and interpret
guided wave propagation phenomena.

An investigation into the influence of the two most impor-
tant FE parameters, the mesh density (element length) and
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Fig. 11. Comparison of the mode superposition and the FE solution.

Fig. 12. Experimentally obtained (normalized) radial velocitiesvr for various anglesb, time t in [ms].



the time step size between solution points (integration time
step), is completed by first studying a problem where a well
established analytical solution is available, a flat plate. The
FE solution converges for certain values of element length
and integration time step, so that an optimized model is
developed. This optimization is critical in order to avoid
unnecessarily high hardware requirements and enormous
total calculation times. The optimized FE parameters are
related to wave propagation attributes in order to establish
benchmark criteria, and the correlation between these para-
meters is discussed. For example, the highest wave
frequency affects the integration time step while the shortest
wavelength influences the element length. The numerical
results are in complete agreement with the analytical solu-
tion; both models illustrate the geometric dispersion that is
present in a wave guide.

The experience gained in the flat plate example is next
applied to an annular ring. By using these optimized para-
meters, different wave propagation phenomena in an ideal
ring are investigated. For example, arrival times of waves
propagating directly between two points are compared to
theoretical values; arrival times of numerical wave features
are correlated with experimental results; and the FE results
are directly compared to an analytical solution. All these
comparisons confirm the high accuracy of FE solutions
when applied to wave propagation problems.

In order to show the real advantage of the FE method over
analytical solutions, the geometry of the ring is slightly
changed. It is in these types of examples that the FE method
exhibits its advantages over analytical approaches; the FE
method (can potentially) provide a solution for any geome-
try, as long as this geometry and its boundary conditions can
be modeled. However, some special steps, like mesh refin-
ing at anticipated stress concentrations, may be necessary.
An additional advantage of the FE model is that the numer-
ical results can be elegantly presented using the post-
processing, graphical capabilities inherent to the program.

For example, a snapshot of the displacement field or a color
plot of the stress distributions can give new insights into
wave propagation phenomena.
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