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Abstract

The objective of this research is to use analytical and computational models to develop a quantitative understanding of the propagation of
guided Lamb waves in multi-layered, adhesive bonded components. Key issues of this study include the effect of the adhesive bond layer,
including its low stiffness (relative to the adherends) and viscoelastic behavior. The propagation of these guided waves are interpreted in
terms of dispersion relationships, displacement profiles and attenuation curves (both as functions of frequency and wavenumber). The
ultimate goal of this study is to determine the effectiveness and sensitivity of guided Lamb waves to determine the in situ properties of an
adhesive bond. A combination of the analytical model, transient FEM simulation and experimental measurements provides a better under-
standing of the guided wave’s behavior in this layered waveguide. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A promising new methodology uses guided ultrasonic
waves to interrogate adhesive bonded components; the
primary advantage of using guided waves in this application
is that they are capable of interrogating large, inaccessible
components in a time-efficient manner. The main difficulty
with using guided waves is the inherent complexity of the
waveforms, making interpretation difficult. Previous
research [1] combined laser ultrasonic techniques with the
two-dimensional Fourier transformation (2D-FFT) to
experimentally characterize the stiffness of adhesive bonds
with guided Lamb waves (Lamb waves are guided plate
waves). This research experimentally measured transient
waves in three-layer (two aluminum plate adherends joined
by an adhesive) and two-layer (the same aluminum plate
bonded to the same, single adhesive layer) plate specimens,
to study the influence of the adhesive bond on the dispersion
curves of these specimens.

These experimental results [1] show that the modes
excited and measured in these bonded specimens are always
identical to the dispersion curves of a single plate—one of
the aluminum adherends. When the adhesive bond’s
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stiffness is low in comparison to the adherend’s stiffness,
the specimen behaves like a single stress free plate of the
thickness of the independent plate components. For exam-
ple, Fig. 1 shows the experimentally measured dispersion
curves (contour plot of the three-dimensional frequency
versus wavenumber spectrum) for a three-layer bonded
specimen—two 0.9398 mm thick aluminum plate adher-
ends joined with a 0.25 mm thick adhesive layer. These
experimentally measured contours are superimposed on
the theoretical solution (solid lines) of the Rayleigh—
Lamb frequency spectrum for a single aluminum plate
with a thickness of 0.9398 mm (one of the adherends).
Additional experimental insights are that the number of
modes measured in the two- and three-layer bonded speci-
mens is always less than the number of modes measured in a
single, stress free plate. Both the two- and three-layer
bonded specimens behave like a single plate (one of the
adherends), there are just fewer modes observed in these
bonded specimens. In addition, the modes measured in a
bonded specimen are less defined (less clarity), and gener-
ally exist through a smaller frequency (or wavenumber)
bandwidth than those measured in the corresponding, single
plate. In summary, the adhesive layer does not cause any
frequency shifts in the dispersion curves (in comparison to a
single plate), but it does damp-out portions of these
modes—see Ref. [1] for details.

The objective of the current research is to use analytical
and computational models to develop a quantitative
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Fig. 1. Typical experimentally measured dispersion curves of the three-
layer model, plus analytical dispersion curves of a single aluminum plate
adherend (solid lines).

understanding of the propagation of guided Lamb waves in
multi-layered, adhesive bonded components. A specific goal
of this study is to develop a theoretical understanding of the
experimental behavior observed in Ref. [1]. Key issues of
this study include the effect of the adhesive bond layer,
including its low stiffness (relative to the aluminum adher-
ends) and its viscoelastic behavior. The propagation of these
guided waves are interpreted in terms of dispersion relation-
ships, displacement profiles and attenuation curves (both as
functions of frequency and wavenumber). The ultimate goal
of this study is to determine the effectiveness and sensitivity
of guided Lamb waves to determine the in situ properties of
an adhesive bond.

The analytical model (developed following Ref. [2])
describes the steady-state solution of guided waves in
layered media. This steady-state solution is a frequency—
wavenumber relationship for the different modes that can
propagate in layered media and is presented in the form of
dispersion curves. The corresponding displacement fields
are calculated by solving for the eigenvectors (for a par-
ticular wavenumber) of the associated eigenvalue problem
(the dispersion relationship). The adhesive bonds investi-
gated in this research are polymers, which are viscoelastic
materials. This viscoelastic behavior causes amplitude
damping and frequency shifts as a guided wave propagates
in an adhesive bonded component. This study assumes a
Kelvin—Voight solid, and a linearization (needed to
simplify complex root solving) to describe the frequency-
dependent attenuation of the adhesive layer. The resulting
attenuation of each mode is calculated in order to determine
which modes are damped out, and at which frequencies.

The solution of the analytical model, with its dispersion
curves, displacement fields and attenuation curves explain
most, but not all of the experimentally observed phenomena.
These analytical models cannot determine absolute ampli-
tudes of the individual modes in the dispersion curves, yet

these amplitudes are exactly the quantity measured in the
experiments [1]. So, this research applies the finite element
(FEM) code, ABAQUS/Explicit, to numerically model the
transient, Lamb wave propagation problem. This FEM
simulation is very robust, producing an enormous amount
of data (such as the time-dependent displacements at mul-
tiple locations, including interior points) in a single ‘nu-
merical experiment’. A combination of the analytical
model, transient FEM simulation and experimental measure-
ments provides an excellent understanding of the guided
wave’s behavior in an adhesive bonded, layered waveguide.

Lowe and Cawley [3] analyzed the sensitivity of adhesive
bond properties on guided waves using a three-layer model,
and showed that Lamb waves are strongly sensitive to the
material properties and thicknesses of the adherends, while
being very insensitive to the properties of the adhesive bond.
Their results are similar to those of Nagy and Adler [4], who
studied guided waves in adhesive layers between two half-
spaces, and demonstrated that the resulting dispersion
curves are relatively insensitive to the properties of the
adhesive layer. Lowe et al. [5] recently used the FEM to
study the transmission of Lamb waves across adhesively
bonded lap joints, demonstrating the physics of the mode
conversion behavior and providing a basis for the selection
of modes for NDE of bonds. In addition, a number of
researchers have developed dispersion curves using oblique
incidence measurements with immersion piezoelectric
transducers (e.g. see Ref. [6]).

2. Analytical model: elastic case

Previous researchers such as Pavlakovic et al. [7] and
Niklasson and Datta [8] have developed analytical models
for layered elastic plates. In a similar fashion, the current
research develops an analytical model for guided waves in
layered plates and uses this model to gain insights into the
experimental behavior observed in Ref. [1]. In brief (and
following Ref. [2]), this model uses potential functions to
separately describe the steady-state (harmonic) solution of
the governing wave equations for each layer (plane-strain,
elastic and isotropic material). The resulting displacement
and traction components for each layer are written in terms
of four arbitrary constants (four constants for each layer). In
general, an N-layer specimen requires 4N boundary (or
continuity) conditions to evaluate the constants. The speci-
mens under consideration in this research have the follow-
ing boundary conditions:

e The upper and lower surfaces are stress free, so the
tractions o, and o, are zero at these locations.

e Continuity of displacement and stress at each interface,
so the tractions 0, and o, and displacements u; and u,
in each layer are equal at the interfaces.

The resulting system of 12 homogeneous equations for
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the three-layer specimen (or eight homogeneous equations
for the two-layer case) is written in matrix form, and the
condition that the determinant of this matrix must vanish
yields a characteristic equation that is solved numerically
with a FORTRAN program. The 12 homogeneous equations of
the three-layer case are presented in Appendix A, and details
on the numerical procedure are available in Ref. [9].

The eigenvalues for this characteristic equation are the
frequency—wavenumber (f-k) relationships of the different
modes, while the associated eigenvectors are the displace-
ment fields for each mode. Because the frequency of a mode
is a function of wavenumber, each point on the mode has a
different eigenvector, and thus a different displacement
field. For any pair of f~k values of a mode, the associated
eigenvectors can be calculated by plugging them back into
the eigen-problem and solving the resulting linear system.
The eigenvectors can only be calculated up to an arbitrary
constant, so it is helpful to normalize the displacement field
to the maximum displacement. This normalization leads to
an qualitative description of the displacement field—a
quantitative statement about the amplitudes of the displace-
ment field is not possible. Finally, the correctness and accu-
racy of the current analytical model (and its associated
numerical solution) is tested by benchmarking with the
results of a three-layer model published in Ref. [3]—there
is excellent agreement between the two procedures see
Ref. [9] for details.

Now consider a three-layer bonded specimen of two
aluminum plate adherends, joined together with an adhesive
layer (the middle layer) with properties similar to the speci-
mens examined in Ref. [1]. Each aluminum plate is
0.9398 mm thick, while the adhesive layer is 0.25 mm
thick. The aluminum has a longitudinal wave speed of
6450 m s~ ', a shear wave speed of 3100 m s~ and a density
of 2700 kg m —*, while the adhesive properties are taken as
longitudinal wave speed of 771 m s~ ', shear wave speed of
370 m s~ ' and a density of 1106 kg m . Note that the wave
speeds for the adhesive layer (used in this three-layer ana-
Iytical model) are higher than those mentioned in Ref. [1]—
the stiffness values presented in Ref. [1] are the static stiff-
ness values provided by the adhesive manufacturer. These
stiffnesses were only presented in Ref. [1] for reference
purposes and were not used in any calculations. In reality,
the adhesive will be much stiffer at the ultrasonic frequen-
cies considered in this study. In fact, the adhesive will
respond as a glassy material at these higher frequencies,
and will be significantly stiffer than in the static (rubbery)
range, see Ref. [10] for details on the behavior of wave
propagation in polymers. The wave speeds used in this
paper for the adhesive layer are a reasonable representation
of the actual wave speeds measured in Ref. [1]. Note that a
lower stiffness material has also been studied (with this same
model, see Refs. [9,11] for details), yielding the same general
behavior that will be presented in the following sections. In
addition, the influence of the frequency dependency of the
viscoelastic adhesive layer is discussed in Section 3.
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Fig. 2. Analytical dispersion curves for the three-layer model.

Fig. 2 shows the analytically calculated dispersion curves
for the three-layer model in a wavenumber range of 0—
10 000 m ™" and a frequency range of 0—7 MHz—Fig. 2 is
the analytical representation of the experimentally
measured dispersion curves shown in Fig. 1. First, the ana-
lytical solution shows many more modes than are present in
the experimental results of Fig. 1, for the same three-layer
specimen. The analytical model shows about 20 more
modes (many that have substantial, nearly horizontal
portions) that are not measured in the experiments—these
‘additional’ modes do not appear in Fig. 1. The analytical
solution (Fig. 2) also shows another significant feature—
some modes seem to follow the modes of a single aluminum
plate (one of the adherends). This is especially important
when considering that the only experimentally observed
modes in Fig. 1 are the single aluminum plate modes. In
order to explain this behavior, Fig. 3 is a zoom of the disper-
sion curves in Fig. 2 (as dashed lines) for a wavenumber
range of 0-5000 m ™' and a frequency range of 0—3 MHz,
with the addition of the dispersion curves of a single alu-
minum plate (0.9398 mm thick—one of the adherends)
noted as solid lines. This artificial superposition of the
dispersion curves of a single aluminum plate (solid lines)
onto the three-layer dispersion curves (dashed lines) in Fig.
3 is done as a visual aid for the following explanation. Fig. 3
shows that the modes that appear to be single aluminum
plate modes are not individual modes (they are not contin-
uous), but are composed of a series of different modes that
merge to ‘follow’ the single aluminum plate modes for short
wavenumber/frequency ‘distances’. In general, two three-
layer modes merge when following a single aluminum
plate mode—these portions of the three-layer modes that
follow a single aluminum plate mode are identified as
‘aluminum modes’ in the reminder of this paper.

As an explanation of this behavior, Fig. 4 presents the
in-plane displacement components (u#;) plotted as solid
lines, and the out-of-plane displacement components (u,)
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Fig. 3. Zoom of dispersion curves in Fig. 2, plus artificial superposition of
single aluminum plate adherend (solid lines).
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Fig. 4. Displacement fields (solid line in-plane and dashed line out-of-
plane) for f~k locations identified in Fig. 3.

plotted as dashed lines at six different f—k pairs, whose
locations are identified in Fig. 3. The vertical axes in
Fig. 4 are the thicknesses of the entire three-layer specimen
in the x, direction (through thickness), normalized to the
thickness of a single aluminum plate (adherend)—one
aluminum plate thickness (0.9398 mm) is equal to 100.
The horizontal axes show the normalized displacements.
Consider the displacements at points SA (Fig. 4(a)) and
5B (Fig. 4(b)), two points on the same mode, one removed
from the single aluminum plate mode (5A) and the other in
the vicinity of this single plate mode (5B). Fig. 4(a) shows
that the only significant displacements at 5A are in the
adhesive layer—there is practically no displacement in
the aluminum plates at 5A. In contrast, Fig. 4(b) shows
that point 5B has substantial displacements in the adhesive
layer and the aluminum plate layers. The displacements in
the aluminum plates (high stiffness) dominate the displace-
ments in the adhesive layer (low stiffness) at point 5B, so
regions with significant displacements in the aluminum
layers will have ‘associated’ displacements in the adhesive
layer. This same behavior is evidenced when considering
points 3B and 3C—two points on a different mode, one
near, and one removed from the single plate mode (see
Fig. 4(c) and (d)). An additional demonstration of this be-
havior is seen by comparing four points with the same wave-
number (k = 2000 m _1), but on different modes (points 3B,
4B, 5B and 6B). There are only substantial displacements in
the aluminum plate adherends of the three-layer model at
this wavenumber for frequencies associated with a single
aluminum plate mode (3B and 5B). This particular mode
corresponds to the s, mode of a single aluminum plate. The
shapes of the displacement fields at 3B and 5B in the alu-
minum layers of the three-layer model are similar to the dis-
placement fields of a single aluminum plate, when
examining the s, mode at the same f—k point. The displace-
ment field of the s, mode in a single aluminum plate
(0.9398 mm thick) at kK = 2000 m~ ! is shown in Fig. 5 for
confirmation. Finally, note that the displacement behavior
discussed here is representative of nearly all the modes of
this three-layer model, see Ref. [9] for details.

Since the experimental procedure (the laser inter-
ferometric detector of [1]) only measures out-of-plane
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Fig. 5. Displacement fields (solid line in-plane and dashed line out-of-
plane) for the s mode of a single aluminum plate adherend at k =
2000m™".
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displacements on the outer surface of the three-layer bonded
specimen, the experimental results of Fig. 1 are indicative of
modes that have large out-of-plane displacements at the top
and bottom surfaces of this three-layer bonded specimen.
The three-layer analytical model results show that only f—k
pairs in the vicinity of the single aluminum plate modes
have substantial displacements (both in-plane and out-
of-plane) on the surface of each aluminum plate adherends.
As a result, the experimental measurements in Ref. [1] will
only ‘see’ these aluminum modes—this is one reason why
the experimental results for a three-layer bonded specimen
in Fig. 1 only show (some of) the modes of a single,
0.9398 mm thick aluminum plate.

The dispersion results for a two-layer model (a single
0.9398 mm aluminum plate bonded to the same adhesive
layer) show similar behavior as the three-layer model (see
Refs. [9,11] for details on the two-layer model). The main
difference is that the two-layer model always has only one
mode following the aluminum mode—as opposed to the
two modes that generally follow the aluminum mode in
the three-layer model. As a result, the two aluminum plates
of the three-layer model can combine (in-phase) to cause
motion along the aluminum mode, while the two-layer
model only has one aluminum plate to contribute to this
motion. Consider the displacements at two points at the
same aluminum mode, 3B and 5B in Fig. 4 as an illustration.
Point 5B has in-phase, in-plane displacements, and out-
of-phase, out-of-plane displacements, while 3B has the
opposite—out-of-phase, in-plane displacements and
in-phase, out-of-plane displacements. In contrast, the ana-
logous two-layer specimen does not have a second plate
which can combine (in-phase or out-of-phase) with the
first plate. This contributes to the experimentally observed
behavior of amplitudes in the two-layer specimen being
smaller than the three-layer specimen [1].

3. Analytical model: viscoelastic case

The three-layer analytical model developed in Section 2
does not account for any viscoelastic behavior that can
occur in the (polymer) adhesive layer. The adhesive’s
viscoelasticity causes material damping, and the accom-
panying amplitude attenuation. Most research in the field
of attenuation of guided waves has concentrated on the leak-
age of wave energy from a solid waveguide into a viscous fluid
[12]. Many authors define attenuation as the energy loss due to
the leakage from one media (layer) into another [3], as
opposed to losses due to material damping. In contrast,
the current study defines attenuation as the amplitude loss
solely due to material damping in the viscoelastic adhesive
layer (the experiments of Ref. [1] used laser ultrasonic tech-
niques, so the specimens are not immersed in a fluid).
Previous researchers who studied the behavior of guided
waves in viscoelastic materials mainly limited themselves
to waves propagating in a single layer, see Refs. [13-15]. A

recent publication [16] provides a theoretical prediction of
the damping effect in a viscoelastic bond (layer), with an
upper frequency limit of 2 MHz, for the first two modes.

The current research uses the Kelvin—Voight model (a
parallel combination of a spring and a dashpot) to describe
the viscoelastic material behavior of the adhesive bond
layer. The stress—strain relationship for a Kelvin—Voight
solid is given by

_ I
0 = Ciuen + Cijuéu- (D

The first term in Eq. (1) is the linear elastic contribution (the
spring), while the second term is the viscous contribution
(dashpot). As is the case for the linear elastic model of
Section 2, assume a time harmonic function for strain and
stress (e.g. € = & ¢'"), and Eq. (1) becomes

A

G = Cijuéus ()

where C',-jk, is the complex material modulus, defined as
C‘,»jk, = Cyju + iwCéjk,. The viscoelastic stress—strain re-
lationship in the harmonic case (Eq. (2)) is similar to the lin-
ear elastic stress—strain relationship, except that the material
modulus is complex and frequency-dependent in the visco-
elastic case—this similarity is known as the ‘correspon-
dence principle’. The real part of the material modulus €
corresponds to the material’s capacity to store energy, while
the imaginary part corresponds to the loss of energy in the
material. The complex material modulus for an isotropic
material is described with two independent moduli

D=d+iwd, 3)

S=s+iws', (4)
where the modulus D corresponds to the dilatation modulus
in the linear elastic case, and the modulus S corresponds to
the shear modulus in the linear elastic case [13]. Note that
the real parts of the moduli D and § are given by the linear
elastic constants d = A + 2u and s = pu, and are coupled by
the Poisson’s ratio, v. A similar parameter is used to
develop a relationship between the viscous material
constants, d’ and s’

/ d/

VS =y ®

The parameter v’ is similar to the Poisson’s ratio v, and has
values between 0.5 and —1.0. A material where all the
losses are due to shear deformation has ¥ = —1.0, while
a material with no losses due to shear deformation has v =
0.5.

The wavenumber k has a complex value in the visco-
elastic case

k =k, + ik;. (6)
This complex wavenumber yields an in-plane displacement
(in the nth layer) in the form

u(]n) ~ ei(kxlfwt) ~ ei(k,xlfwt) e*kixl’ (7)
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while a similar relationship exists for the out-of-plane
displacement. Eq. (7) shows that the real part of the complex
wavenumber, k,, represents the propagating Lamb wave,
while the imaginary part, k;, is a measure of the attenuation
of the amplitude of the displacement field due to material
damping (k; equal to zero corresponds to the linear elastic
case).

The numerical algorithms used for the elastic case must
be modified for the viscoelastic case because the elastic
algorithms search for a frequency at a fixed real wavenum-
ber. Coquin [13] showed that for small values of material
damping—this is the case for the adhesive in this study—in
a single plate, the real part of the wavenumber only changes
slightly when compared to the corresponding elastic case.
This behavior (that the dispersion curves for a viscoelastic
case are nearly identical to those of the elastic case) is used
to develop a linearization assumption of the matrix elements
A; (presented in Appendix A) around the previously
calculated linear elastic wavenumber, kg, or

A~

A= Aglir T+ d—k” (fo,ko)(Akr + ik;). ®)
The shift in the real part of the wavenumber from the linear
elastic wavenumber k, is quantified by Ak, while the
attenuation contribution to the mode is given by k;. The
determinant of the linearized matrix, A is a complex poly-
nomial, whose complex roots are determined with the
symbolic manipulation program MAPLE. The number of
complex roots at one linearization point is equal to the
size of the matrix A. The one root with the smallest shift
Ak, is the root of the propagating wave. The other roots are
far away from the linearization point and are not physically
realistic (the attenuation is so large that these waves will
damp out for a realistic propagation distance), so they are
discarded. One check of the validity of this solution pro-
cedure is to use the linearized matrix model of Eq. (8) to
solve the three-layer elastic case of Section 2. The results
give one root equal to zero (because there is no damping)
and all of the other roots are complex conjugate, and are far
away from the linearization point. These correspond to the
‘physically unrealistic’ roots neglected in the viscoelastic
case.

Note that the linearization is not always realistic for small
wavenumbers—the shift of the real wavenumber increases
rapidly as the wavenumber approaches zero. As a result, any
predicted attenuation values for wavenumbers less than
500 m ™' must be treated with caution. In addition, Eq. (7)
shows that the imaginary wavenumber k; must be zero or
positive to describe a physically meaningful case, while the
linearized matrix A yields roots with negative values for k; in
some cases. These negative k; values represent damping for
waves propagating in negative x;-direction [14], so the
attenuation of a wave is described by the absolute value of
the imaginary wavenumber, k; in the reminder of this paper.

The accuracy of this linearized viscoelastic model is
tested by benchmarking with the attenuation curves of a

)
m

Attenuation k; (

~

0 -2 .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Wavenumber, k, (%)

(a) Attenuation curves

oD~ e ©

Frequency, f (MHz)
o

N W s

0 . . .
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Wavenumber, &, ()

(b) Dispersion curves

Fig. 6. Single aluminum plate adherend, with “fictitious’ damping added.

single layer (stress free, viscoelastic plate) presented in
Ref. [13] and obtaining exact agreement, see Ref. [9] for
details. For reference purposes, Fig. 6 shows the attenuation
curves, plus the corresponding dispersion curves for a
single, stress free aluminum plate (0.9398 mm thick) with
“fictitious’ material damping (¥ = —0.5) added to the
aluminum. Note that the shift in the real wavenumber is
always much less than 1% of the wavenumber calculated
for the linear elastic case—this shift is so small that it
cannot even be seen in the dispersion curves of Fig. 6(b).
Note that the wavenumbers plotted on the horizontal scales
of Fig. 6 (and Fig. 7) are the real portion of Eq. (6), k;, and
represent the propagating portion of the wave. Since the
shift in the wavenumber, Ak, is small in comparison to
the linearization point, k, these k; horizontal axes are
effectively ‘equal’ to the k axes of the elastic cases.

The analytical three-layer model described in Section 2 is
modified by making the adhesive layer viscoelastic (v =
—0.5), while keeping the aluminum plates elastic—Fig. 7
shows the attenuation curves for the first eight modes, plus
the corresponding dispersion curves, for this viscoelastic
model. Since one objective of the current study is to under-
stand the experimentally observed behavior of Ref. [1], the
absolute value of damping in the adhesive layer is not
critical. In fact, additional research [9] shows that for the
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Fig. 7. Attenuation of the three-layer model with viscoelastic adhesive
layer.

‘low’ level of damping considered in this study, the absolute
damping values d’ and s’ only scale the attenuation curves of
Fig. 7, and do not change their shape. These calculations
also show that the damping values d’ and s’ only have a
marginal influence on the real frequency—wavenumber
relationship (dispersion) of the three-layer model—this is
similar to the single plate case presented in Fig. 6.

The attenuation of the higher modes in both Figs. 6 and 7
is in general, higher than in the lower modes. This behavior,
which is partially due to the frequency-dependent damping
behavior of the Kelvin—Voight model, helps to explain the
experimentally observed trend [1] that the higher modes of
the adhesive bonded specimens are damped out. The
attenuation curves of Fig. 7 show a number of trends for
the three-layer model. First, when following along any of
the eight modes, its ‘aluminum’ portion(s) have low
attenuation, while its ‘remaining’ portion(s) have high
attenuation values. In fact, the attenuation values of a par-
ticular mode decreases or increases as that mode approaches
or recedes from its aluminum mode region(s). This corre-
sponds to the fact that the displacements in the aluminum
mode regions are dominated by the elastic, aluminum
plates, while the displacements in the remaining regions
of a mode mainly occur in the viscoelastic adhesive
layer—this displacement behavior is shown in Fig. 4. In
addition, the attenuation curves for the aluminum modes
of this three-layer model generally follow the same trends
as the attenuation curves of the single aluminum plate with

fictitious damping. In other words, the combined attenuation
behavior of a composite of the aluminum mode portions of
these eight modes is similar to the attenuation behavior of
the single viscoelastic plate shown in Fig. 6. Finally,
attenuation is related to the shape of the dispersion curve
in the ‘transition’ zones as a mode approaches or recedes
from its aluminum mode region(s). There will be high
attenuation if the dispersion curve has a gradual slope in
this transition zone, because the adhesive layer displace-
ments are dominant. If the transition zone is long, then the
attenuation curve has a very smooth shape. If the transition
zone is very short, then the attenuation curves increase very
sharply.

The experiments in Ref. [1] also show that the amplitudes
along the aluminum modes are lower in the two-layer speci-
men than in the three-layer specimen, so the attenuation
behavior of the two-layer model is investigated. The two-
layer attenuation curves show that the overall shape is the
same for the two- and three-layer models, but the attenua-
tion is higher in the two-layer model than in the three-layer
model (see Ref. [9] for details). This behavior occurs
because more energy propagates in the adhesive layer in
the two-layer specimen than in the adhesive layer of the
three-layer specimen—the energy in the three-layer speci-
men, must also propagate in the second aluminum plate,
where there is no damping.

4. Finite element simulation

The analytical models do not calculate the absolute
displacement values of the wave amplitudes, so these
models cannot determine absolute amplitudes of the indi-
vidual modes in the dispersion curves—yet these amplitudes
are exactly the quantity measured in the experiments of
Ref. [1]. Recall that the experimentally measured transient
waveforms are operated on with the 2D-FFT to produce the
dispersion relationships, and these dispersion curves are 3D
plots with ‘peak’ heights directly related to signal amplitude
(the absolute signal strength). Recent studies (e.g. see
Ref. [17]) have shown that the FEM is capable of accurately
and efficiently modeling guided wave propagation in the
ultrasonic frequency range. An FEM simulation is robust,
since an enormous amount of information (different data
such as the time-dependent displacements at multiple loca-
tions, including interior points) can be collected in a single
simulation. This research uses the FEM code, ABAQUS/
Explicit [18].

The spatial discretization of a specimen is a critical issue
when modeling wave propagation with the FEM—an accu-
rate representation requires that the smallest wavelength be
discretized with at least 20 nodes [17]. Unfortunately, an
accurate discretization of the three-layer specimen for a
maximum frequency of 5 MHz, requires 6.35 million
elements [9]. Such a model is dominated by the fine discre-
tization needed to model wave propagation in the adhesive
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layer. The objective of the FEM simulation is to understand
trends and behavior and not necessarily to wholly model the
two- and three-layer adhesive bonded specimens. As a
result, a coarser model that does not accurately describe
modes with very short wavelengths (high frequency com-
ponents) that can occur in the adhesive bond is accepta-
ble—these modes are not measured in the experiments of
Ref. [1] so they are only of minor interest in this research.
This research uses a four-node plane-strain continuum
element (CPE4R). Such an element provides a second-
order interpolation, with reduced integration and hourglass
control (hourglassing is a numerical phenomena by which a
zero-energy mode propagates [18]). Each node has two-
degrees of freedom (plane-strain assumption). An FEM
model is developed with a mesh of 140 000 elements and
an element size of 0.03—0.05 mm (three-layer specimen). A
mesh refinement of a factor of 2 (that increases the problem
size by a factor of 4) produces the same solution—this
defines convergence of the FEM model [17].

Infinite elements are attached at the ends of the FEM
model to absorb the incoming energy and simulate an
infinite specimen, thus eliminating most of the reflections
from the edges. The ‘laser’ source is located 25 mm away
from the edge and is simulated as a force in the out-of-plane
(x,-direction), distributed as a sine over a time of 0.3 s
which corresponds to a frequency of 3.3 MHz. The particle
velocities (time-derivative of displacements) are ‘measured’
on the surface for 200 points, which are equally spaced from
30.15 to 60.15 mm (Ax = 0.15 mm) away from the source.
The FEM simulation uses 200 spatial points (both in-plane
and out-of-plane) for the 2D-FFT (compared to the 50
spatial points of the experiments) to achieve superior spatial
resolution. By measuring both velocity components, it is
possible to investigate the relative mode strengths of the
in-plane and out-of-plane amplitudes. The same measure-
ments are also completed on interior planes that are parallel
to the surface to investigate the strength of the modes inside
of the specimen. The measured data is processed (in a simi-
lar fashion to the experiments of Ref. [1]) with a 2D-FFT
implemented in MATLAB. The 2D-FFT routine operates on
this set of 200 equally spaced, transient waveforms by
computing a temporal Fourier transform (time to frequency
domain) followed by a spatial Fourier transform (position to
wavenumber domain). There is no windowing; the temporal
FFT operates on the entire transient waveform, and each of
these 200 frequency domain signals (in their entirety) are
used in the spatial FFT.

The first simulations are done without damping, by
assuming that the adhesive is linear elastic. Next, damping
is added to the adhesive layer to simulate its viscoelastic
behavior. Damping is added in ABAQUS using a strain
proportional damping (unit of time) that describes viscous
material damping which causes a ‘damping stress’ in the
adhesive which is proportional to the strain rate. This is
similar to the viscous stress—strain relationship of the
Kelvin—Voight solid in Eq. (1). Fig. 8 shows the dispersion
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Fig. 8. FEM simulation of three-layer model, elastic adhesive layer. This
includes the analytical dispersion curves of the three-layer model (dotted
lines) and a single aluminum plate adherend (solid lines).

curves developed with a 2D-FFT of the in-plane and out-
of-plane surface velocities, for an FEM simulation of the
three-layer specimen with an elastic adhesive layer (no
damping). In addition, Fig. 8 includes the analytical solution
for the dispersion curves of the three-layer specimen calcu-
lated with the analytical model (plotted as dotted lines), plus
the analytical solution for a single, stress free aluminum
plate adherend (plotted as solid lines). Fig. 8 shows that
the primary motion is—as measured in the experiments
and predicted by the analytical model—along the aluminum
modes. However, there are also some modes visible at the
transition zones near the aluminum modes. These are ‘non-
aluminum modes’ that are not measured in the experiments,
but are predicted by the analytical model. Overall, the
out-of-plane motion is stronger (higher amplitudes) than
the in-plane motion, but the transition zones are better
defined in the in-plane plot.

Fig. 9 shows the 2D-FFT of the same FEM simulation,
except that the adhesive layer is viscoelastic (damping
added). The material damping has the effect that only
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Fig. 9. FEM simulation of three-layer model, viscoelastic adhesive layer.
This includes the analytical dispersion curves of the three-layer model
(dotted lines) and a single aluminum plate adherend (solid lines).

displacements along the aluminum modes are visible, and
any traces of a mode in the transition zones are no longer
visible. In addition, some of the higher aluminum modes,
that are clearly visible in Fig. 8, are damped out in Fig. 9.
Damping along the aluminum modes is strongest in the
vicinity of the transition to its non-aluminum (motion in
the adhesive) portion. In fact, the size of these gaps may
be a possible experimentally measurable metric to deter-
mine the quality of a bond.

Finally, one special mode is the first ‘horizontal mode,’
with a cut-off frequency of around 350 kHz. This mode is
clearly visible in both the damped and un-damped simula-
tions (out-of-plane, in Figs. 8 and 9) for wavenumbers
below 1000 m~". Note that an inspection of the theoretical
dispersion curves in this region (as presented in Figs. 3 and
7(c)) shows that this horizontal mode is mode 2 (and a small
part of mode 4). The analytical eigenvectors of mode 2 at
wavenumbers k = 500 and 1000 m ™' reveals that there are
significant out-of-plane displacements in the aluminum
plates and in the adhesive layer at these wavenumbers.

This is different from the previous analytical results (as
presented in Fig. 4)—this mode does not follow a single
plate mode at these wavenumbers (it is not an aluminum
mode), yet it has significant displacements in the aluminum
plates at these wavenumbers. An explanation for this be-
havior is that the motion of the adhesive layer is so dominant
in this region that it causes significant displacements in the
aluminum plates. In addition, material damping has a small
effect in this region (due in part to the frequency-dependent
nature of the Kelvin—Voight model), so there is little differ-
ence between the damped and un-damped results in Figs. 8
and 9. This trend is reinforced when considering the attenua-
tion curve for mode 2 in Fig. 7(a)—there is very little
attenuation in mode 2 in this region. This mode is important
for NDE applications—it is not dominated by the motion of
the aluminum plates at these wavenumbers, so it should be
very sensitive to the properties of the adhesive layer. It is
important to note that this mode was only identified and
interpreted after considering both the FEM and analytical
results.

5. Conclusion

This research uses analytical and computational models
to develop a quantitative understanding of the propagation
of guided Lamb waves in multi-layered, adhesive bonded
components—this study provides a theoretical understand-
ing of the experimental behavior observed in Ref. [1].

The analytical two- and three-layer models show that
only modes in the vicinity of the single aluminum plate
modes (and not the additional modes) have substantial
displacements (both in-plane and out-of-plane) on the
surface of the aluminum adherends. As a result, the exper-
imental measurements in Ref. [1] only see these aluminum
modes—this is one reason why the experimental results for
a three-layer bonded specimen in Fig. 1 only show some of
the modes of a single, 0.9398 mm thick aluminum plate.
The displacement fields show that regions removed from
the aluminum modes only have substantial displacements
in the adhesive layer, and not in the aluminum plate adher-
ends. The aluminum modes have similar displacement fields
to those of a single, stress free aluminum plate. The results
of the two-layer model are similar to the results of the three-
layer model, except that there is only one mode following
the aluminum modes in the two-layer model.

The attenuation values of a particular mode decrease or
increase as that mode approaches or recedes from its alumi-
num mode region(s). This corresponds to the fact that the
displacements in the aluminum mode regions are dominated
by the elastic, aluminum plates, while the displacements in
the remaining regions of a mode mainly occur in the visco-
elastic adhesive layer. The shapes of the attenuation curves
for the three-layer model along the aluminum modes are
very similar to the attenuation of a single, stress free alumi-
num plate with fictitious damping. The two-layer attenua-
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tion curves show that attenuation is higher in the two-layer
model than in the three-layer model. This behavior occurs
because more energy propagates in the adhesive layer in the
two-layer specimen than in the adhesive layer of the three-
layer specimen.

The FEM simulation is very robust, producing an enor-
mous amount of data in a single ‘numerical experiment’.
These results agree with the predictions of the analytical
model and the experimental results—the primary motion
is along the aluminum modes. The addition of material
damping to the adhesive layer has the effect that only dis-
placements along the aluminum modes are visible. In addi-
tion, some of the higher aluminum modes that are clearly
visible in the elastic case are damped out by the viscoelastic
adhesive. A combination of the analytical model, transient
FEM simulation and experimental measurements provides
an excellent understanding of the guided wave’s behavior in
an adhesive bonded, layered waveguide.
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Appendix A

The system of 12 equations for the three-layer case can be
written in matrix form as

0
A A A ciy 0
11 12 112 i
[A;I Az A ] < | = (A1)
L Apr Anpy o Apn 1 C?) :
A C 0

The elements of the matrix A are shown using the notation
of Ref. [2]. First, consider the boundary condition at the top
surface (x, = 0) of ag) = 0. This yields

Ay = ADED? 4 D02,

Ay =20k, A =2uVkKY,

A,=0 for5=m=12, (A2)

where the superscript (n) is the layer number, and K{") and
K%”) are the orthogonal wavenumbers (real or complex). The
wavenumber k is parallel to the propagation direction, and
related to the orthogonal wavenumbers by

K" =" - 12, (A3)
K =k — 12, (Ad)

The second boundary condition on the upper surface,

A, = A(])K£1)2 + :U'(I)kl(dl)z’

0}12) = 0, yields
Ay = —2u VKV,

Axz = M(1)<K¥)2 - k2>’

Asy = 2u kK (",
Axy = M(l)(K%l)z - kz)»

Ay =0 for5=m=12 (AS)

The first traction boundary condition for interface 1 at x, =
hy requires that the normal tractions, o§5 and &3 be equal,

or

s
43’1 = — (A(I)KI(AI)Z + l(l)kﬁl)z)elKL hl,
— i
Ayy = - (W)KS)Z (I)E(Lm)e ik h

s () _igM
A3’3 — —2/,L(l)kK-i~l) elKT h]’ A3!4 — 2M(1)kK~i~1) e Ky h|’

)
Ass = (APKD? + u@kP?)ekih,

_ik®@
Az = (AVKP? + uOhP?)e R,

ik® —ik®
Ayy =2u kK X7 Ay = —2uPkKPY e,

Ay, =0 for9=m=12. (A6)

The second traction boundary condition at interface 1 is

Al = oo

gD —ikM
Agy = —2u kKD e A, = 2uVkkY e TR

s (D)
Ay = ;ﬁ”(K;‘)Z - kz)elKT m

i)
Ay = ;L“)(Ké”z _ k2>e Ky

ik i@
Ags = 2u@kKD KM Ao = —2uPhKP e K

ik
Mgz = —p? (KPP — 2)eTh,

_ir®
A4,8 = _M(Z)(K%Z)Z - kz)e IKT hl,

Agn=0 for9=m=12. (A7)

The first displacement boundary for interface 1 (x, = h;) is

continuous horizontal displacements, u(ll) = u(12), or

s (1) _ip(D)
Asy=keh A, =ke K,

Asy = —KP Mg, = KD e K,

Ass =k eiK(LZ)h]’ Asg = —k efiK(LZ)h‘,

hy =KD SN gy = RO,

As,, =0 for9 =m = 12. A8)

The second displacement boundary condition at interface 1
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is u(zl) =u?

h , OF

D ig® D —ik®
A6,1 — KI(‘) elKL h,’ A6,2 — _KI(‘) e Ky h,’

KD —ig®
Agz =kefTM  Agy=ke T,

(@ _ip@

Ags = _K£2) K Ags = Kiz) e K

i (2) _ir@
A6,7 = —k elKT h]’ Aﬁ‘g — ke 1KT h
Aem =20 for9=m = 12. (A9)
The first traction boundary condition at interface 2 (x, = h,)
is 0@ = o9 or

m=0 forl =m = 4,

(D
Ags = —()\(Z)Kf)z + M(z)k(Lz)z)elkL hz’

_ig®
Arg = _( ADKe2 4 @ k(Lzu)e Ky

e s
A =2 u? kK(Tz) elkrh Ay =2u® kK(Tz) e K

< -(3)
A7,9 _ (/\(3)K£3)2 + M(3)k§)2)elKL hz’

—_ig®
Ango = (AKE? + uORER)e ke,

A7,11 = 2[.1«(3)ka(1~3) eiK—(F})hz,
(A10)

The second traction boundary condition at interface 2 is

o = of.or

Ag,n=0 forl=m=4,
Ags = —2uPkKD K

Age = Z,U«(Z)kKI(?) e_iK(LZ)hz’
Agy = ,u(z)(K?)2 - kz)eiK(Tz’hz,

i@
Agg = Mm( k@2 - kz)e K,

ik
Ago = 2u kK e,

i
Agio = —2u kK e KT,
S
Ay = _MG)(K?)Z _ kZ)elKT)hz’
_ip(®
Ag1n = ,lLG)(K?)Z - kz)e iy (A11)

TG
A7’12 = _2/*L(3)kK"(F3) € iy hz.

The first displacement boundary condition at interface 2 is

(2) = u(lg), or

Ay, =0 forl =m =4,

() _ir®@
A9’5 — k elKL h2’ A9,6 — k e IKL hz’

2) LiKPh 2) —ikPh
Agy=—KP Ml Agg =KD e K,
s (3) i
Agg = —keile, Ay g = —ke T,
_ 3 iKkn, _ (3 —ikDh,
A9,11 = KT eT, A9’12 = KT € T (A12)

The second displacement boundary condition at interface 2
isuy;’ = u(; )

Ay =0 forl =m =4,

_ (@ LiKPh _ @) —iK®h,
Aps =K e, Ao = —K"e L,

_ 7 iK%n, _ 1 —ik%n,
A107—ke T Alog—ke T

_ 3) Lik®h _ 3 —ik®h
Ao = —K" e, Ao =K"e ",

(3) _:ip)

Ay = —kefih, Ay = —ke (A13)

The final boundary conditions are on the stress free lower

surface (x, = h3), 0'(3) =

An’m=0 forlémé&
i3

Ao = ( AOKO2 4 M<3>k<L3>2)elKL s

_ig®
Ario = (AIKD? + uOk?)e K,
s (3)
A = 2M(3)kKri~3) oK h3’

Ay = —2u kK KT, (Al4)

The last boundary condition U'S) = 0 at the lower surface
gives

Alz’mZO forlémé&
s (3)

Ang = —2uVkK KT,
_ir®

Ao = 2p kK e 7T,

(3
Ay = ,U«G)(K%S)Z _ kz)elKT h3

App = (3)(KG)2 kz)efiK(Tmh? (A15)
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